BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 26826488)

  • 1. A cancer treatment based on synergy between anti-angiogenic and immune cell therapies.
    Soto-Ortiz L; Finley SD
    J Theor Biol; 2016 Apr; 394():197-211. PubMed ID: 26826488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vascular endothelial growth factor and immunosuppression in cancer: current knowledge and potential for new therapy.
    Johnson BF; Clay TM; Hobeika AC; Lyerly HK; Morse MA
    Expert Opin Biol Ther; 2007 Apr; 7(4):449-60. PubMed ID: 17373897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antibodies to vascular endothelial growth factor enhance the efficacy of cancer immunotherapy by improving endogenous dendritic cell function.
    Gabrilovich DI; Ishida T; Nadaf S; Ohm JE; Carbone DP
    Clin Cancer Res; 1999 Oct; 5(10):2963-70. PubMed ID: 10537366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The impact of tumor receptor heterogeneity on the response to anti-angiogenic cancer treatment.
    Li D; Finley SD
    Integr Biol (Camb); 2018 Apr; 10(4):253-269. PubMed ID: 29623971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vascular normalization as an emerging strategy to enhance cancer immunotherapy.
    Huang Y; Goel S; Duda DG; Fukumura D; Jain RK
    Cancer Res; 2013 May; 73(10):2943-8. PubMed ID: 23440426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vascular endothelial growth factor blockade reduces intratumoral regulatory T cells and enhances the efficacy of a GM-CSF-secreting cancer immunotherapy.
    Li B; Lalani AS; Harding TC; Luan B; Koprivnikar K; Huan Tu G; Prell R; VanRoey MJ; Simmons AD; Jooss K
    Clin Cancer Res; 2006 Nov; 12(22):6808-16. PubMed ID: 17121902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combinations of Bevacizumab With Cancer Immunotherapy.
    Chen DS; Hurwitz H
    Cancer J; 2018; 24(4):193-204. PubMed ID: 30119083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The contribution of vascular endothelial growth factor to the induction of regulatory T-cells in malignant effusions.
    Wada J; Suzuki H; Fuchino R; Yamasaki A; Nagai S; Yanai K; Koga K; Nakamura M; Tanaka M; Morisaki T; Katano M
    Anticancer Res; 2009 Mar; 29(3):881-8. PubMed ID: 19414323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immune checkpoint Ab enhances the antigen-specific anti-tumor effects by modulating both dendritic cells and regulatory T lymphocytes.
    Sun NY; Chen YL; Lin HW; Chiang YC; Chang CF; Tai YJ; Chen CA; Sun WZ; Chien CL; Cheng WF
    Cancer Lett; 2019 Mar; 444():20-34. PubMed ID: 30543813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mathematical Modeling of Cellular Cross-Talk Between Endothelial and Tumor Cells Highlights Counterintuitive Effects of VEGF-Targeted Therapies.
    Jain H; Jackson T
    Bull Math Biol; 2018 May; 80(5):971-1016. PubMed ID: 28439752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anti-angiogenesis for cancer revisited: Is there a role for combinations with immunotherapy?
    Ramjiawan RR; Griffioen AW; Duda DG
    Angiogenesis; 2017 May; 20(2):185-204. PubMed ID: 28361267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Review of Anti-Angiogenic Targets for Monoclonal Antibody Cancer Therapy.
    Kong DH; Kim MR; Jang JH; Na HJ; Lee S
    Int J Mol Sci; 2017 Aug; 18(8):. PubMed ID: 28817103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clinically feasible approaches to potentiating cancer cell-based immunotherapies.
    Seledtsov VI; Goncharov AG; Seledtsova GV
    Hum Vaccin Immunother; 2015; 11(4):851-69. PubMed ID: 25933181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vascular endothelial growth factor and bevacitumab in breast cancer.
    Bando H
    Breast Cancer; 2007; 14(2):163-73. PubMed ID: 17485901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An extended mathematical model of tumor growth and its interaction with the immune system, to be used for developing an optimized immunotherapy treatment protocol.
    Qomlaqi M; Bahrami F; Ajami M; Hajati J
    Math Biosci; 2017 Oct; 292():1-9. PubMed ID: 28713023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring the Immunological Mechanisms Underlying the Anti-vascular Endothelial Growth Factor Activity in Tumors.
    de Aguiar RB; de Moraes JZ
    Front Immunol; 2019; 10():1023. PubMed ID: 31156623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Manipulation of the crosstalk between tumor angiogenesis and immunosuppression in the tumor microenvironment: Insight into the combination therapy of anti-angiogenesis and immune checkpoint blockade.
    Zheng W; Qian C; Tang Y; Yang C; Zhou Y; Shen P; Chen W; Yu S; Wei Z; Wang A; Lu Y; Zhao Y
    Front Immunol; 2022; 13():1035323. PubMed ID: 36439137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A mathematical model of the enhancement of tumor vaccine efficacy by immunotherapy.
    Wilson S; Levy D
    Bull Math Biol; 2012 Jul; 74(7):1485-500. PubMed ID: 22438084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anti-tumoral effect of active immunotherapy in C57BL/6 mice using a recombinant human VEGF protein as antigen and three chemically unrelated adjuvants.
    Morera Y; Bequet-Romero M; Ayala M; Lamdán H; Agger EM; Andersen P; Gavilondo JV
    Angiogenesis; 2008; 11(4):381-93. PubMed ID: 19034678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimized antiangiogenic reprogramming of the tumor microenvironment potentiates CD40 immunotherapy.
    Kashyap AS; Schmittnaegel M; Rigamonti N; Pais-Ferreira D; Mueller P; Buchi M; Ooi CH; Kreuzaler M; Hirschmann P; Guichard A; Rieder N; Bill R; Herting F; Kienast Y; Dirnhofer S; Klein C; Hoves S; Ries CH; Corse E; De Palma M; Zippelius A
    Proc Natl Acad Sci U S A; 2020 Jan; 117(1):541-551. PubMed ID: 31889004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.