These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 26826646)

  • 1. Impact of water quality on chlorine demand of corroding copper.
    Lytle DA; Liggett J
    Water Res; 2016 Apr; 92():11-21. PubMed ID: 26826646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalysis of copper corrosion products on chlorine decay and HAA formation in simulated distribution systems.
    Zhang H; Andrews SA
    Water Res; 2012 May; 46(8):2665-73. PubMed ID: 22386330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chlorine Reduction Kinetics and its Mass Balance in Copper Premise Plumbing Systems During Corrosion Events.
    Vargas IT; Anguita JM; Pastén PA; Pizarro GE
    Materials (Basel); 2019 Nov; 12(22):. PubMed ID: 31717254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of pipe corrosion scales on chlorine dioxide consumption in drinking water distribution systems.
    Zhang Z; Stout JE; Yu VL; Vidic R
    Water Res; 2008 Jan; 42(1-2):129-36. PubMed ID: 17884130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fate of free chlorine in drinking water during distribution in premise plumbing.
    Zheng M; He C; He Q
    Ecotoxicology; 2015 Dec; 24(10):2151-5. PubMed ID: 26407709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid free chlorine decay in the presence of Cu(OH)2: chemistry and practical implications.
    Nguyen CK; Powers KA; Raetz MA; Parks JL; Edwards MA
    Water Res; 2011 Oct; 45(16):5302-12. PubMed ID: 21868051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoscale investigation of the impact of pH and orthophosphate on the corrosion of copper surfaces in water.
    Lewandowski BR; Lytle DA; Garno JC
    Langmuir; 2010 Sep; 26(18):14671-9. PubMed ID: 20799694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microelectrode evaluation of in situ oxidant reactivity and pH variability at new ductile iron and copper coupon surfaces.
    Lee WH; Wahman DG; Lytle DA; Pressman JG; Chung J
    Water Res; 2023 Sep; 243():120352. PubMed ID: 37482000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Applying microelectrodes to investigate aged ductile iron and copper coupon reactivity during free chlorine application.
    Liggett JE; Gonzalez BC; Lytle DA; Pressman JG; Dionysiou DD; Lee WH; Harmon SM; Wahman DG
    Water Res; 2024 Apr; 253():121324. PubMed ID: 38382294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of temperature, chlorine, and organic matter in copper corrosion by-product release in soft water.
    Boulay N; Edwards M
    Water Res; 2001 Mar; 35(3):683-90. PubMed ID: 11228965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactive Effects of Copper Pipe, Stagnation, Corrosion Control, and Disinfectant Residual Influenced Reduction of
    Martin RL; Strom OR; Pruden A; Edwards MA
    Pathogens; 2020 Sep; 9(9):. PubMed ID: 32899686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Corrosion control in water supply systems: effect of pH, alkalinity, and orthophosphate on lead and copper leaching from brass plumbing.
    Tam YS; Elefsiniotis P
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2009 Oct; 44(12):1251-60. PubMed ID: 19847713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Indicators for microbiologically induced corrosion of copper pipes in a cold-water plumbing system.
    Arens P; Tuschewitzki GJ; Wollmann M; Follner H; Jacobi H
    Zentralbl Hyg Umweltmed; 1995 Jan; 196(5):444-54. PubMed ID: 7727024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Natural Organic Matter, Orthophosphate, pH, and Growth Phase Can Limit Copper Antimicrobial Efficacy for
    Song Y; Pruden A; Edwards MA; Rhoads WJ
    Environ Sci Technol; 2021 Feb; 55(3):1759-1768. PubMed ID: 33428375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of Water Chemistry, Pipe Material and Stagnation on the Building Plumbing Microbiome.
    Ji P; Parks J; Edwards MA; Pruden A
    PLoS One; 2015; 10(10):e0141087. PubMed ID: 26495985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactive Effects of Corrosion, Copper, and Chloramines on Legionella and Mycobacteria in Hot Water Plumbing.
    Rhoads WJ; Pruden A; Edwards MA
    Environ Sci Technol; 2017 Jun; 51(12):7065-7075. PubMed ID: 28513143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitrification in premise plumbing: role of phosphate, pH and pipe corrosion.
    Zhang Y; Griffin A; Edwards M
    Environ Sci Technol; 2008 Jun; 42(12):4280-4. PubMed ID: 18605545
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of copper(II) and copper oxides on THMs formation in copper pipe.
    Li B; Qu J; Liu H; Hu C
    Chemosphere; 2007 Aug; 68(11):2153-60. PubMed ID: 17363030
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chlorine decay in drinking-water transmission and distribution systems: pipe service age effect.
    Al-Jasser AO
    Water Res; 2007 Jan; 41(2):387-96. PubMed ID: 17140619
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of temperature, chlorine residual and heavy metals on the presence of Legionella pneumophila in hot water distribution systems.
    Rakić A; Perić J; Foglar L
    Ann Agric Environ Med; 2012; 19(3):431-6. PubMed ID: 23020035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.