These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 26826717)

  • 1. Library of binding protein scaffolds (LibBP): a computational platform for selection of binding protein scaffolds.
    Hong S; Kim D
    Bioinformatics; 2016 Jun; 32(11):1709-15. PubMed ID: 26826717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational design of a leucine-rich repeat protein with a predefined geometry.
    Rämisch S; Weininger U; Martinsson J; Akke M; André I
    Proc Natl Acad Sci U S A; 2014 Dec; 111(50):17875-80. PubMed ID: 25427795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Patterns of positive selection in the complete NBS-LRR gene family of Arabidopsis thaliana.
    Mondragón-Palomino M; Meyers BC; Michelmore RW; Gaut BS
    Genome Res; 2002 Sep; 12(9):1305-15. PubMed ID: 12213767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative sequence analysis of leucine-rich repeats (LRRs) within vertebrate toll-like receptors.
    Matsushima N; Tanaka T; Enkhbayar P; Mikami T; Taga M; Yamada K; Kuroki Y
    BMC Genomics; 2007 May; 8():124. PubMed ID: 17517123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Artificial leucine rich repeats as new scaffolds for protein design.
    Baabur-Cohen H; Dayalan S; Shumacher I; Cohen-Luria R; Ashkenasy G
    Bioorg Med Chem Lett; 2011 Apr; 21(8):2372-5. PubMed ID: 21420858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Revealing aperiodic aspects of solenoid proteins from sequence information.
    Hrabe T; Jaroszewski L; Godzik A
    Bioinformatics; 2016 Sep; 32(18):2776-82. PubMed ID: 27334472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modular peptide binding: from a comparison of natural binders to designed armadillo repeat proteins.
    Reichen C; Hansen S; Plückthun A
    J Struct Biol; 2014 Feb; 185(2):147-62. PubMed ID: 23916513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative analysis and prediction of curvature in leucine-rich repeat proteins.
    Hindle KL; Bella J; Lovell SC
    Proteins; 2009 Nov; 77(2):342-58. PubMed ID: 19452560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein Engineering by Combined Computational and In Vitro Evolution Approaches.
    Rosenfeld L; Heyne M; Shifman JM; Papo N
    Trends Biochem Sci; 2016 May; 41(5):421-433. PubMed ID: 27061494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analyses of non-leucine-rich repeat (non-LRR) regions intervening between LRRs in proteins.
    Matsushima N; Mikami T; Tanaka T; Miyashita H; Yamada K; Kuroki Y
    Biochim Biophys Acta; 2009 Oct; 1790(10):1217-37. PubMed ID: 19580846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Designed armadillo repeat proteins as general peptide-binding scaffolds: consensus design and computational optimization of the hydrophobic core.
    Parmeggiani F; Pellarin R; Larsen AP; Varadamsetty G; Stumpp MT; Zerbe O; Caflisch A; Plückthun A
    J Mol Biol; 2008 Mar; 376(5):1282-304. PubMed ID: 18222472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A bioinformatics pipeline to build a knowledge database for in silico antibody engineering.
    Zhao S; Lu J
    Mol Immunol; 2011 Apr; 48(8):1019-26. PubMed ID: 21310488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DARPins and other repeat protein scaffolds: advances in engineering and applications.
    Boersma YL; Plückthun A
    Curr Opin Biotechnol; 2011 Dec; 22(6):849-57. PubMed ID: 21715155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling of the three-dimensional structure of proteins with the typical leucine-rich repeats.
    Kajava AV; Vassart G; Wodak SJ
    Structure; 1995 Sep; 3(9):867-77. PubMed ID: 8535781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineered protein scaffolds for molecular recognition.
    Skerra A
    J Mol Recognit; 2000; 13(4):167-87. PubMed ID: 10931555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CoLiDe: Combinatorial Library Design tool for probing protein sequence space.
    Tretyachenko V; Voráček V; Souček R; Fujishima K; Hlouchová K
    Bioinformatics; 2021 May; 37(4):482-489. PubMed ID: 32956450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide detection and analysis of alternative splicing for nucleotide binding site-leucine-rich repeats sequences in rice.
    Gu L; Guo R
    J Genet Genomics; 2007 Mar; 34(3):247-57. PubMed ID: 17498622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression, purification and preliminary biochemical and structural characterization of the leucine rich repeat namesake domain of leucine rich repeat kinase 2.
    Vancraenenbroeck R; Lobbestael E; Weeks SD; Strelkov SV; Baekelandt V; Taymans JM; De Maeyer M
    Biochim Biophys Acta; 2012 Mar; 1824(3):450-60. PubMed ID: 22251894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A computational analysis of non-genomic plasma membrane progestin binding proteins: signaling through ion channel-linked cell surface receptors.
    Morrill GA; Kostellow AB; Gupta RK
    Steroids; 2013 Dec; 78(12-13):1233-44. PubMed ID: 24012561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PIRLs: a novel class of plant intracellular leucine-rich repeat proteins.
    Forsthoefel NR; Cutler K; Port MD; Yamamoto T; Vernon DM
    Plant Cell Physiol; 2005 Jun; 46(6):913-22. PubMed ID: 15809230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.