These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 26826794)

  • 1. Cesium cation templated selective synthesis of a "cone-shaped" sugar macrotricyclic cryptand: A dual anion-cation molecular recognition of potassium tartrate.
    Porwanski S; Moretti F; Dumarcay-Charbonnier F; Marsura A
    Ann Pharm Fr; 2016 May; 74(3):198-204. PubMed ID: 26826794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. De novo synthesis of sugar-aza-crown ethers via a domino Staudinger aza-Wittig reaction.
    Ménand M; Blais JC; Valéry JM; Xie J
    J Org Chem; 2006 Apr; 71(8):3295-8. PubMed ID: 16599634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bis(meta-phenylene)-32-crown-10-based cryptand/diquat inclusion [2]complexes.
    Huang F; Slebodnick C; Switek KA; Gibson HW
    Chem Commun (Camb); 2006 May; (18):1929-31. PubMed ID: 16767239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NMR Studies on Li⁺, Na⁺ and K⁺ Complexes of Orthoester Cryptand o-Me₂-1.1.1.
    Brachvogel RC; Maid H; von Delius M
    Int J Mol Sci; 2015 Aug; 16(9):20641-56. PubMed ID: 26334274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bis(m-phenylene)-32-crown-10-based cryptands, powerful hosts for paraquat derivatives.
    Huang F; Switek KA; Zakharov LN; Fronczek FR; Slebodnick C; Lam M; Golen JA; Bryant WS; Mason PE; Rheingold AL; Ashraf-Khorassani M; Gibson HW
    J Org Chem; 2005 Apr; 70(8):3231-41. PubMed ID: 15822986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of a water-soluble bis(m-phenylene)-32-crown-10-based cryptand and its pH-responsive binding to a paraquat derivative.
    Ji X; Zhang M; Yan X; Li J; Huang F
    Chem Commun (Camb); 2013 Feb; 49(12):1178-80. PubMed ID: 23288042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and characterization of a tris(2-hydroxyphenyl)methane-based cryptand and its triiron(III) complex.
    Guillet GL; Sloane FT; Dumont MF; Abboud KA; Murray LJ
    Dalton Trans; 2012 Jul; 41(26):7866-9. PubMed ID: 22562046
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of new saccharide azacrown cryptands.
    Pintal M; Charbonniere-Dumarcay F; Marsura A; Porwański S
    Carbohydr Res; 2015 Sep; 414():51-9. PubMed ID: 26257374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A facile one-pot synthesis of a new cryptand via a Pd(II)-catalysed carbonylation reaction.
    Knight JC; Prabaharan R; Ward BD; Amoroso AJ; Edwards PG; Kariuki BM
    Dalton Trans; 2010 Nov; 39(42):10031-3. PubMed ID: 20877912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cryptand derived fluorescence signaling systems for sensing Hg(II) ion: A comparative study.
    Sadhu KK; Sen S; Bharadwaj PK
    Dalton Trans; 2011 Jan; 40(3):726-34. PubMed ID: 21120252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectroscopic and conductometric studies of molecular complex formation between 2,4,6-trinitrophenol and diaza-18-crown-6, tetraaza-14-crown-4 and cryptand C222 in 1,2-dichloroethane solution.
    Hasani M; Irandoust M; Shamsipur M
    Spectrochim Acta A Mol Biomol Spectrosc; 2006 Feb; 63(2):377-82. PubMed ID: 16377234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective recognition of tetrahedral dianions by a hexaaza cryptand receptor.
    Mateus P; Delgado R; Brandão P; Carvalho S; Félix V
    Org Biomol Chem; 2009 Nov; 7(22):4661-73. PubMed ID: 19865702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supramolecular "transmetalation" leads to an unusual self-assembled P2L3 cryptand.
    Cangelosi VM; Zakharov LN; Johnson DW
    Angew Chem Int Ed Engl; 2010 Feb; 49(7):1248-51. PubMed ID: 20077454
    [No Abstract]   [Full Text] [Related]  

  • 14. A novel trisprotonated beta-dialdiminate cryptand.
    Chin A; Edgar M; Harding CJ; McKee V; Nelson J
    Dalton Trans; 2009 Aug; (32):6315-26. PubMed ID: 19655065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three protocols for the formation of a [3]pseudorotaxane via orthogonal cryptand-based host-guest recognition and coordination-driven self-assembly.
    Li J; Wei P; Wu X; Xue M; Yan X
    Org Lett; 2013 Oct; 15(19):4984-7. PubMed ID: 24059808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Matrix-dependent modulation of anisotropic effects on NMR spectra from 7Li+ and 23Na+ encapsulated in cryptands.
    Naumann C; Kuchel PW
    Eur Biophys J; 2013 Jan; 42(1):17-23. PubMed ID: 23111566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-assembly of [3]catenanes and a [4]molecular necklace based on a cryptand/paraquat recognition motif.
    Ye Y; Wang SP; Zhu B; Cook TR; Wu J; Li S; Stang PJ
    Org Lett; 2015 Jun; 17(11):2804-7. PubMed ID: 25996900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis, Structure and Supramolecular Properties of a Novel C3 Cryptand with Pyridine Units in the Bridges.
    Crişan CV; Soran A; Bende A; Hӑdade ND; Terec A; Grosu I
    Molecules; 2020 Aug; 25(17):. PubMed ID: 32825376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Primary amine recognition in water by a calix[6]aza-cryptand incorporated in dodecylphosphocholine micelles.
    Brunetti E; Inthasot A; Keymeulen F; Reinaud O; Jabin I; Bartik K
    Org Biomol Chem; 2015 Mar; 13(10):2931-8. PubMed ID: 25592828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cryptand cage: perfect skeleton for transition metal induced two-step fluorescence resonance energy transfer.
    Sadhu KK; Banerjee S; Datta A; Bharadwaj PK
    Chem Commun (Camb); 2009 Sep; (33):4982-4. PubMed ID: 19668823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.