These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 26827028)

  • 1. The aero-acoustic Galbrun equation in the time domain with perfectly matched layer boundary conditions.
    Feng X; Ben Tahar M; Baccouche R
    J Acoust Soc Am; 2016 Jan; 139(1):320-31. PubMed ID: 26827028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A mixed finite element method for acoustic wave propagation in moving fluids based on an Eulerian-Lagrangian description.
    Treyssède F; Gabard G; Ben Tahar M
    J Acoust Soc Am; 2003 Feb; 113(2):705-16. PubMed ID: 12597165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel unsplit perfectly matched layer for the second-order acoustic wave equation.
    Ma Y; Yu J; Wang Y
    Ultrasonics; 2014 Aug; 54(6):1568-74. PubMed ID: 24794509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An immersed boundary computational model for acoustic scattering problems with complex geometries.
    Sun X; Jiang Y; Liang A; Jing X
    J Acoust Soc Am; 2012 Nov; 132(5):3190-9. PubMed ID: 23145603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Perfectly matched layers for frequency-domain integral equation acoustic scattering problems.
    Alles EJ; van Dongen KW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 May; 58(5):1077-86. PubMed ID: 21622063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Convolutional perfectly matched layer for elastic second-order wave equation.
    Li Y; Bou Matar O
    J Acoust Soc Am; 2010 Mar; 127(3):1318-27. PubMed ID: 20329831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Convolution quadrature methods for time-domain scattering from unbounded penetrable interfaces.
    Labarca I; Faria LM; Pérez-Arancibia C
    Proc Math Phys Eng Sci; 2019 Jul; 475(2227):20190029. PubMed ID: 31423089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Eulerian method for computing multivalued solutions of the Euler-Poisson equations and applications to wave breaking in klystrons.
    Li X; Wöhlbier JG; Jin S; Booske JH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004; 70(1 Pt 2):016502. PubMed ID: 15324179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Local absorbing boundary conditions for a linearized Korteweg-de Vries equation.
    Zhang W; Li H; Wu X
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):053305. PubMed ID: 25353913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The pseudospectral time-domain (PSTD) algorithm for acoustic waves in absorptive media.
    Liu QH
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(4):1044-55. PubMed ID: 18244259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A perfectly matched layer for fluid-solid problems: Application to ocean-acoustics simulations with solid ocean bottoms.
    Xie Z; Matzen R; Cristini P; Komatitsch D; Martin R
    J Acoust Soc Am; 2016 Jul; 140(1):165. PubMed ID: 27475142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unified approach to split absorbing boundary conditions for nonlinear Schrödinger equations.
    Zhang J; Xu Z; Wu X
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 2):026709. PubMed ID: 18850975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical investigation of the trapped modes in the presence of non-potential flow.
    Ma C; Ramadan I; Ben Tahar M
    J Acoust Soc Am; 2021 Oct; 150(4):2514. PubMed ID: 34717451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stability analysis and design of time-domain acoustic impedance boundary conditions for lined duct with mean flow.
    Liu X; Huang X; Zhang X
    J Acoust Soc Am; 2014 Nov; 136(5):2441-52. PubMed ID: 25373946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iterative Solution Method for the Linearized Poisson-Boltzmann Equation: Indirect Boundary Integral Equation Approach.
    Kim MJ; Yoon BJ
    J Colloid Interface Sci; 2001 Apr; 236(1):173-179. PubMed ID: 11254343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lagrangian averages, averaged Lagrangians, and the mean effects of fluctuations in fluid dynamics.
    Holm DD
    Chaos; 2002 Jun; 12(2):518-530. PubMed ID: 12779582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Local absorbing boundary conditions for nonlinear wave equation on unbounded domain.
    Li H; Wu X; Zhang J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 2):036707. PubMed ID: 22060529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acoustic streaming: an arbitrary Lagrangian-Eulerian perspective.
    Nama N; Huang TJ; Costanzo F
    J Fluid Mech; 2017 Aug; 825():600-630. PubMed ID: 29051631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A modified and stable version of a perfectly matched layer technique for the 3-d second order wave equation in time domain with an application to aeroacoustics.
    Kaltenbacher B; Kaltenbacher M; Sim I
    J Comput Phys; 2013 Feb; 235(100):407-422. PubMed ID: 23888085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modified Mixed Lagrangian-Eulerian Method Based on Numerical Framework of MT3DMS on Cauchy Boundary.
    Suk H
    Ground Water; 2016 Jul; 54(4):508-20. PubMed ID: 26754057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.