These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
257 related articles for article (PubMed ID: 26827330)
21. A molecular beam epitaxy facility for in situ neutron scattering. Dura JA; LaRock J Rev Sci Instrum; 2009 Jul; 80(7):073906. PubMed ID: 19655964 [TBL] [Abstract][Full Text] [Related]
22. Conceptual design of a macromolecular diffractometer for the Jülich high brilliance source. Ma Z; Lieutenant K; Voigt J; Schrader TE; Gutberlet T Rev Sci Instrum; 2024 Jun; 95(6):. PubMed ID: 38832850 [TBL] [Abstract][Full Text] [Related]
23. Breakdown of the Stokes-Einstein relationship and rapid structural ordering in CuZrAl metallic glass-forming liquids. Chen FZ; Mauro NA; Bertrand SM; McGrath P; Zimmer L; Kelton KF J Chem Phys; 2021 Sep; 155(10):104501. PubMed ID: 34525827 [TBL] [Abstract][Full Text] [Related]
24. Correlation of the fragility of metallic liquids with the high temperature structure, volume, and cohesive energy. Gangopadhyay AK; Pueblo CE; Dai R; Johnson ML; Ashcraft R; Van Hoesen D; Sellers M; Kelton KF J Chem Phys; 2017 Apr; 146(15):154506. PubMed ID: 28433017 [TBL] [Abstract][Full Text] [Related]
25. Note: Detector collimators for the nanoscale ordered materials diffractometer instrument at the Spallation Neutron Source. Tamalonis A; Weber JK; Neuefeind JC; Carruth J; Skinner LB; Alderman OL; Benmore CJ Rev Sci Instrum; 2015 Sep; 86(9):096105. PubMed ID: 26429492 [TBL] [Abstract][Full Text] [Related]
26. Containerless measurements of thermophysical properties of Zr54Ti8Cu20Al10Ni8. Bradshaw RC; Warren ME; Rogers JR; Rathz TJ; Gangopadhyay AK; Kelton KF; Hyers RW Ann N Y Acad Sci; 2006 Sep; 1077():63-74. PubMed ID: 17124115 [TBL] [Abstract][Full Text] [Related]
27. Vacuum system upgrade for extended Q-range small-angle neutron scattering diffractometer (EQ-SANS) at SNS. Stone C; Williams D; Price J MethodsX; 2016; 3():525-534. PubMed ID: 27766212 [TBL] [Abstract][Full Text] [Related]
28. A method for the monitoring of metal recrystallization based on the in-situ measurement of the elastic energy release using neutron diffraction. Christien F; Telling MT; Knight KS; Le Gall R Rev Sci Instrum; 2015 May; 86(5):053901. PubMed ID: 26026530 [TBL] [Abstract][Full Text] [Related]
29. Relaxation processes in room temperature ionic liquids: the case of 1-butyl-3-methyl imidazolium hexafluorophosphate. Triolo A; Russina O; Hardacre C; Nieuwenhuyzen M; Gonzalez MA; Grimm H J Phys Chem B; 2005 Nov; 109(46):22061-6. PubMed ID: 16853864 [TBL] [Abstract][Full Text] [Related]
30. AGES: Automated Gas Environment System for Kirkham M; Heroux L; Ruiz-Rodriguez M; Huq A Rev Sci Instrum; 2018 Sep; 89(9):092904. PubMed ID: 30278698 [TBL] [Abstract][Full Text] [Related]
31. Design and operating characteristic of a vacuum furnace for time-of-flight inelastic neutron scattering measurements. Niedziela JL; Mills R; Loguillo MJ; Skorpenske HD; Armitage D; Smith HL; Lin JYY; Lucas MS; Stone MB; Abernathy DL Rev Sci Instrum; 2017 Oct; 88(10):105116. PubMed ID: 29092522 [TBL] [Abstract][Full Text] [Related]
32. Neutron diffraction study of aqueous Laponite suspensions at the NIMROD diffractometer. Tudisca V; Bruni F; Scoppola E; Angelini R; Ruzicka B; Zulian L; Soper AK; Ricci MA Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032301. PubMed ID: 25314440 [TBL] [Abstract][Full Text] [Related]
33. Design of back-streaming white neutron beam line at CSNS. Zhang LY; Jing HT; Tang JY; Li Q; Ruan XC; Ren J; Ning CJ; Yu YJ; Tan ZX; Wang PC; He YC; Wang XQ Appl Radiat Isot; 2018 Feb; 132():212-221. PubMed ID: 29239757 [TBL] [Abstract][Full Text] [Related]
34. H- radio frequency source development at the Spallation Neutron Source. Welton RF; Dudnikov VG; Gawne KR; Han BX; Murray SN; Pennisi TR; Roseberry RT; Santana M; Stockli MP; Turvey MW Rev Sci Instrum; 2012 Feb; 83(2):02A725. PubMed ID: 22380234 [TBL] [Abstract][Full Text] [Related]
35. The new cold neutron chopper spectrometer at the Spallation Neutron Source: design and performance. Ehlers G; Podlesnyak AA; Niedziela JL; Iverson EB; Sokol PE Rev Sci Instrum; 2011 Aug; 82(8):085108. PubMed ID: 21895276 [TBL] [Abstract][Full Text] [Related]
36. The Fundamental Neutron Physics Beamline at the Spallation Neutron Source. Greene G; Cianciolo V; Koehler P; Allen R; Snow WM; Huffman P; Gould C; Bowman D; Cooper M; Doyle J J Res Natl Inst Stand Technol; 2005; 110(3):149-52. PubMed ID: 27308112 [TBL] [Abstract][Full Text] [Related]
37. Instrument performance study on the short and long pulse options of the second Spallation Neutron Source target station. Zhao JK; Herwig KW; Robertson JL; Gallmeier FX; Riemer BW Rev Sci Instrum; 2013 Oct; 84(10):105104. PubMed ID: 24182160 [TBL] [Abstract][Full Text] [Related]
38. Neutron instrument concepts for a high intensity moderator at the European spallation source. Samothrakitis S; Bertelsen M; Willendrup PK; Knudsen EB; Larsen CB; Rizzi N; Zanini L; Santoro V; Strobl M Sci Rep; 2024 Apr; 14(1):9360. PubMed ID: 38653793 [TBL] [Abstract][Full Text] [Related]
39. A neutron resonance capture analysis experimental station at the ISIS spallation source. Pietropaolo A; Gorini G; Festa G; Reali E; Grazzi F; Schooneveld EM Appl Spectrosc; 2010 Sep; 64(9):1068-71. PubMed ID: 20828445 [TBL] [Abstract][Full Text] [Related]
40. Elastic incoherent neutron scattering operating by varying instrumental energy resolution: principle, simulations, and experiments of the resolution elastic neutron scattering (RENS). Magazù S; Migliardo F; Benedetto A Rev Sci Instrum; 2011 Oct; 82(10):105115. PubMed ID: 22047337 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]