BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 26828184)

  • 1. Spatial Scale and Field Management Affect Patterns of Phosphorus Loss in Cranberry Floodwaters.
    Kennedy CD; Kleinman PJ; DeMoranville CJ
    J Environ Qual; 2016 Jan; 45(1):285-93. PubMed ID: 26828184
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Mobilization and transformation of phosphorus from water-soil interface of flooded soil].
    Tian J; Liu L; Ding HS; Chen T
    Huan Jing Ke Xue; 2008 Jul; 29(7):1818-23. PubMed ID: 18828360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical and Isotopic Tracers Illustrate Pathways of Nitrogen Loss in Cranberry Floodwaters.
    Kennedy CD; Buda AR; Kleinman PJ; DeMoranville CJ
    J Environ Qual; 2015 Jul; 44(4):1326-32. PubMed ID: 26437115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Managing Surface Water Inputs to Reduce Phosphorus Loss from Cranberry Farms.
    Kennedy CD; Kleinman PJA; DeMoranville CJ; Elkin KR; Bryant RB; Buda AR
    J Environ Qual; 2017 Nov; 46(6):1472-1479. PubMed ID: 29293836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement and modeling of phosphorous transport in shallow groundwater environments.
    Hendricks GS; Shukla S; Obreza TA; Harris WG
    J Contam Hydrol; 2014 Aug; 164():125-37. PubMed ID: 24981965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorus Release to Floodwater from Calcareous Surface Soils and Their Corresponding Subsurface Soils under Anaerobic Conditions.
    Jayarathne PD; Kumaragamage D; Indraratne S; Flaten D; Goltz D
    J Environ Qual; 2016 Jul; 45(4):1375-84. PubMed ID: 27380087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Winter runoff losses of phosphorus from paddy soils in the Taihu Lake Region of South China.
    Zhang H; Cao Z; Wang G; Zhang H; Wong MH
    Chemosphere; 2003 Sep; 52(9):1461-6. PubMed ID: 12867176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphorus export by runoff from agricultural field plots with different crop cover in Lake Taihu watershed.
    Yan WJ; Huang MX; Zhang S; Tang YJ
    J Environ Sci (China); 2001 Oct; 13(4):502-7. PubMed ID: 11723941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature and freezing effects on phosphorus release from soils to overlying floodwater under flooded-anaerobic conditions.
    Kumaragamage D; Concepcion A; Gregory C; Goltz D; Indraratne S; Amarawansha G
    J Environ Qual; 2020 May; 49(3):700-711. PubMed ID: 33016390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial variation of soil phosphorus within a drainage ditch network.
    Vaughan RE; Needelman BA; Kleinman PJ; Allen AL
    J Environ Qual; 2007; 36(4):1096-104. PubMed ID: 17526889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alum reduced phosphorus release from flooded soils under cold spring weather conditions.
    Lasisi A; Weerasekara CS; Kumaragamage D; Akinremi OO
    J Environ Qual; 2023; 52(3):718-729. PubMed ID: 36847149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Release of phosphorus and metal(loid)s from manured soils to floodwater during a laboratory simulation of snowmelt flooding.
    Weerasinghe V; Amarakoon I; Kumaragamage D; Casson NJ; Indraratne S; Goltz D; Gao X
    J Environ Qual; 2024 Apr; ():. PubMed ID: 38688861
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Current and next-year cranberry yields predicted from local features and carryover effects.
    Parent LE; Jamaly R; Atucha A; Jeanne Parent E; Workmaster BA; Ziadi N; Parent SÉ
    PLoS One; 2021; 16(5):e0250575. PubMed ID: 33970921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accumulation of cadmium and uranium in arable soils in Switzerland.
    Bigalke M; Ulrich A; Rehmus A; Keller A
    Environ Pollut; 2017 Feb; 221():85-93. PubMed ID: 27908488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling through-soil transport of phosphorus to surface waters from livestock agriculture at the field and catchment scale.
    McGechan MB; Lewis DR; Hooda PS
    Sci Total Environ; 2005 May; 344(1-3):185-99. PubMed ID: 15907517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphorus transport pathways to streams in tile-drained agricultural watersheds.
    Gentry LE; David MB; Royer TV; Mitchell CA; Starks KM
    J Environ Qual; 2007; 36(2):408-15. PubMed ID: 17255628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Downstream approaches to phosphorus management in agricultural landscapes: regional applicability and use.
    Kröger R; Dunne EJ; Novak J; King KW; McLellan E; Smith DR; Strock J; Boomer K; Tomer M; Noe GB
    Sci Total Environ; 2013 Jan; 442():263-74. PubMed ID: 23178830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphorus Mobilization from Manure-Amended and Unamended Alkaline Soils to Overlying Water during Simulated Flooding.
    Amarawansha EA; Kumaragamage D; Flaten D; Zvomuya F; Tenuta M
    J Environ Qual; 2015 Jul; 44(4):1252-62. PubMed ID: 26437107
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphorus retention in a newly constructed wetland receiving agricultural tile drainage water.
    Kynkäänniemi P; Ulén B; Torstensson G; Tonderski KS
    J Environ Qual; 2013; 42(2):596-605. PubMed ID: 23673852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Occurrence of arsenic and phosphorus in ditch flow from litter-amended soils and barn areas.
    Church CD; Kleinman PJ; Bryant RB; Saporito LS; Allen AL
    J Environ Qual; 2010; 39(6):2080-8. PubMed ID: 21284306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.