These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 26828190)

  • 21. Reconstructing historical changes in phosphorus inputs to rivers from point and nonpoint sources in a rapidly developing watershed in eastern China, 1980-2010.
    Chen D; Hu M; Guo Y; Dahlgren RA
    Sci Total Environ; 2015 Nov; 533():196-204. PubMed ID: 26163441
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Water quality of runoff from agricultural-forestry watersheds in the Geum River Basin, Korea.
    Kim G; Chung S; Lee C
    Environ Monit Assess; 2007 Nov; 134(1-3):441-52. PubMed ID: 17294267
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Impact of human interventions on nutrient biogeochemistry in the Pamba River, Kerala, India.
    David SE; Chattopadhyay M; Chattopadhyay S; Jennerjahn TC
    Sci Total Environ; 2016 Jan; 541():1420-1430. PubMed ID: 26479915
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Water quality modeling of fertilizer management impacts on nitrate losses in tile drains at the field scale.
    Nangia V; Gowda PH; Mulla DJ; Sands GR
    J Environ Qual; 2008; 37(2):296-307. PubMed ID: 18268291
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Denitrification in the shallow ground water of a tile-drained, agricultural watershed.
    Mehnert E; Hwang HH; Johnson TM; Sanford RA; Beaumont WC; Holm TR
    J Environ Qual; 2007; 36(1):80-90. PubMed ID: 17215215
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of road salt application on seasonal chloride concentrations and toxicity in south-central Indiana streams.
    Gardner KM; Royer TV
    J Environ Qual; 2010; 39(3):1036-42. PubMed ID: 20400599
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation of regression methodology with low-frequency water quality sampling to estimate constituent loads for ephemeral watersheds in Texas.
    Toor GS; Harmel RD; Haggard BE; Schmidt G
    J Environ Qual; 2008; 37(5):1847-54. PubMed ID: 18689746
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nitrogen inputs drive nitrogen concentrations in U.S. streams and rivers during summer low flow conditions.
    Bellmore RA; Compton JE; Brooks JR; Fox EW; Hill RA; Sobota DJ; Thornbrugh DJ; Weber MH
    Sci Total Environ; 2018 Oct; 639():1349-1359. PubMed ID: 29929300
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A spatial analysis of phosphorus in the Mississippi river basin.
    Jacobson LM; David MB; Drinkwater LE
    J Environ Qual; 2011; 40(3):931-41. PubMed ID: 21546679
    [TBL] [Abstract][Full Text] [Related]  

  • 30. River chloride trends in snow-affected urban watersheds: increasing concentrations outpace urban growth rate and are common among all seasons.
    Corsi SR; De Cicco LA; Lutz MA; Hirsch RM
    Sci Total Environ; 2015 Mar; 508():488-97. PubMed ID: 25514764
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identifying pathways and processes affecting nitrate and orthophosphate inputs to streams in agricultural watersheds.
    Tesoriero AJ; Duff JH; Wolock DM; Spahr NE; Almendinger JE
    J Environ Qual; 2009; 38(5):1892-900. PubMed ID: 19643755
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phosphorus losses from agricultural watersheds in the Mississippi Delta.
    Yuan Y; Locke MA; Bingner RL; Rebich RA
    J Environ Manage; 2013 Jan; 115():14-20. PubMed ID: 23220653
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Export of Total, Particulate, and Apatite Phosphorus from Forested and Agricultural Watersheds.
    Ostrofsky ML; Stolarski AG; Dagen KA
    J Environ Qual; 2018 Jan; 47(1):106-112. PubMed ID: 29415108
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sewage-effluent phosphorus: a greater risk to river eutrophication than agricultural phosphorus?
    Jarvie HP; Neal C; Withers PJ
    Sci Total Environ; 2006 May; 360(1-3):246-53. PubMed ID: 16226299
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nitrate concentrations in river waters of the upper Thames and its tributaries.
    Neal C; Jarvie HP; Neal M; Hill L; Wickham H
    Sci Total Environ; 2006 Jul; 365(1-3):15-32. PubMed ID: 16618496
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Controls of Chloride Loading and Impairment at the River Network Scale in New England.
    Zuidema S; Wollheim WM; Mineau MM; Green MB; Stewart RJ
    J Environ Qual; 2018 Jul; 47(4):839-847. PubMed ID: 30025050
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Using Campylobacter spp. and Escherichia coli data and Bayesian microbial risk assessment to examine public health risks in agricultural watersheds under tile drainage management.
    Schmidt PJ; Pintar KD; Fazil AM; Flemming CA; Lanthier M; Laprade N; Sunohara MD; Simhon A; Thomas JL; Topp E; Wilkes G; Lapen DR
    Water Res; 2013 Jun; 47(10):3255-72. PubMed ID: 23623467
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sulphate leaching from diffuse agricultural and forest sources in a large central European catchment during 1900-2010.
    Kopáček J; Hejzlar J; Porcal P; Posch M
    Sci Total Environ; 2014 Feb; 470-471():543-50. PubMed ID: 24176702
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Orthophosphorus Contributions to Total Phosphorus Concentrations and Loads in Iowa Agricultural Watersheds.
    Schilling KE; Kim SW; Jones CS; Wolter CF
    J Environ Qual; 2017 Jul; 46(4):828-835. PubMed ID: 28783777
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Base flow nutrient discharges from lower delmarva peninsula watersheds of virginia, USA.
    Stanhope JW; Anderson IC; Reay WG
    J Environ Qual; 2009; 38(5):2070-83. PubMed ID: 19704150
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.