BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 26828480)

  • 1. The Metabolic Fate of ortho-Quinones Derived from Catecholamine Metabolites.
    Ito S; Yamanaka Y; Ojika M; Wakamatsu K
    Int J Mol Sci; 2016 Jan; 17(2):. PubMed ID: 26828480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Norepinephrine and its metabolites are involved in the synthesis of neuromelanin derived from the locus coeruleus.
    Wakamatsu K; Tabuchi K; Ojika M; Zucca FA; Zecca L; Ito S
    J Neurochem; 2015 Nov; 135(4):768-76. PubMed ID: 26156066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical Reactivities of
    Ito S; Sugumaran M; Wakamatsu K
    Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32846902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidation of 3,4-dihydroxybenzylamine affords 3,4-dihydroxybenzaldehyde via the quinone methide intermediate.
    Sugumaran M
    Pigment Cell Res; 1995 Oct; 8(5):250-4. PubMed ID: 8789199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidation of 4-alkylphenols and catechols by tyrosinase: ortho-substituents alter the mechanism of quinoid formation.
    Krol ES; Bolton JL
    Chem Biol Interact; 1997 Apr; 104(1):11-27. PubMed ID: 9158692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduction of the nitro group to amine by hydroiodic acid to synthesize o-aminophenol derivatives as putative degradative markers of neuromelanin.
    Wakamatsu K; Tanaka H; Tabuchi K; Ojika M; Zucca FA; Zecca L; Ito S
    Molecules; 2014 Jun; 19(6):8039-50. PubMed ID: 24936706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A convenient screening method to differentiate phenolic skin whitening tyrosinase inhibitors from leukoderma-inducing phenols.
    Ito S; Wakamatsu K
    J Dermatol Sci; 2015 Oct; 80(1):18-24. PubMed ID: 26228294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The reactivity of o-quinones which do not isomerize to quinone methides correlates with alkylcatechol-induced toxicity in human melanoma cells.
    Bolton JL; Pisha E; Shen L; Krol ES; Iverson SL; Huang Z; van Breemen RB; Pezzuto JM
    Chem Biol Interact; 1997 Sep; 106(2):133-48. PubMed ID: 9366899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct evidence for quinone-quinone methide tautomerism during tyrosinase catalyzed oxidation of 4-allylcatechol.
    Sugumaran M; Bolton J
    Biochem Biophys Res Commun; 1995 Aug; 213(2):469-74. PubMed ID: 7646501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of a new quinone methide intermediate during the oxidative transformation of 3,4-dihydroxyphenylacetic acids: implication for eumelanin biosynthesis.
    Sugumaran M; Duggaraju P; Jayachandran E; Kirk KL
    Arch Biochem Biophys; 1999 Nov; 371(1):98-106. PubMed ID: 10525294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanistic studies on tyrosinase-catalysed oxidative decarboxylation of 3,4-dihydroxymandelic acid.
    Sugumaran M; Dali H; Semensi V
    Biochem J; 1992 Jan; 281 ( Pt 2)(Pt 2):353-7. PubMed ID: 1736884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanistic studies of catechol generation from secondary quinone amines relevant to indole formation and tyrosinase activation.
    Land EJ; Ramsden CA; Riley PA; Yoganathan G
    Pigment Cell Res; 2003 Aug; 16(4):397-406. PubMed ID: 12859624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trapping of transiently formed quinone methide during enzymatic conversion of N-acetyldopamine to N-acetylnorepinephrine.
    Sugumaran M; Saul S; Semensi V
    FEBS Lett; 1989 Jul; 252(1-2):135-8. PubMed ID: 2503395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of the p-alkyl substituent on the isomerization of o-quinones to p-quinone methides: potential bioactivation mechanism for catechols.
    Iverson SL; Hu LQ; Vukomanovic V; Bolton JL
    Chem Res Toxicol; 1995 Jun; 8(4):537-44. PubMed ID: 7548733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tyrosinase catalyzes an unusual oxidative decarboxylation of 3,4-dihydroxymandelate.
    Sugumaran M
    Biochemistry; 1986 Aug; 25(16):4489-92. PubMed ID: 3094574
    [TBL] [Abstract][Full Text] [Related]  

  • 16. o-quinone/quinone methide isomerase: a novel enzyme preventing the destruction of self-matter by phenoloxidase-generated quinones during immune response in insects.
    Saul SJ; Sugumaran M
    FEBS Lett; 1989 Jun; 249(2):155-8. PubMed ID: 2500362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The mechanism of tyrosinase-catalysed oxidative decarboxylation of alpha-(3,4-dihydroxyphenyl)-lactic acid.
    Sugumaran M; Dali H; Semensi V
    Biochem J; 1991 Aug; 277 ( Pt 3)(Pt 3):849-53. PubMed ID: 1908223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tyrosinase-Catalyzed Oxidation of the Leukoderma-Inducing Agent Raspberry Ketone Produces (E)-4-(3-Oxo-1-butenyl)-1,2-benzoquinone: Implications for Melanocyte Toxicity.
    Ito S; Hinoshita M; Suzuki E; Ojika M; Wakamatsu K
    Chem Res Toxicol; 2017 Mar; 30(3):859-868. PubMed ID: 28219012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Melanogenesis-targeted anti-melanoma pro-drug development: effect of side-chain variations on the cytotoxicity of tyrosinase-generated ortho-quinones in a model screening system.
    Riley PA; Cooksey CJ; Johnson CI; Land EJ; Latter AM; Ramsden CA
    Eur J Cancer; 1997 Jan; 33(1):135-43. PubMed ID: 9071913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Oxidation of Equol by Tyrosinase Produces a Unique Di-
    Tanaka H; Ito S; Ojika M; Nishimaki-Mogami T; Kondo K; Wakamatsu K
    Int J Mol Sci; 2021 Aug; 22(17):. PubMed ID: 34502054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.