These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 26828594)

  • 1. Identification of 14-3-3 Proteins Phosphopeptide-Binding Specificity Using an Affinity-Based Computational Approach.
    Li Z; Tang J; Guo F
    PLoS One; 2016; 11(2):e0147467. PubMed ID: 26828594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing protein phosphatase substrate binding: affinity pull-down of ILKAP phosphatase 2C with phosphopeptides.
    Højlys-Larsen KB; Sørensen KK; Jensen KJ; Gammeltoft S
    Mol Biosyst; 2012 Apr; 8(5):1452-60. PubMed ID: 22348942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Affinity methods for phosphorylation-dependent interactions.
    Moorhead G; MacKintosh C
    Methods Mol Biol; 2004; 261():469-78. PubMed ID: 15064476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The crystal structure of the non-liganded 14-3-3sigma protein: insights into determinants of isoform specific ligand binding and dimerization.
    Benzinger A; Popowicz GM; Joy JK; Majumdar S; Holak TA; Hermeking H
    Cell Res; 2005 Apr; 15(4):219-27. PubMed ID: 15857576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of Inhibitors of MMPS Enzymes via a Novel Computational Approach.
    Song J; Tang J; Guo F
    Int J Biol Sci; 2018; 14(8):863-871. PubMed ID: 29989088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FTICR-MS analysis of 14-3-3 isoform substrate selection.
    Cardasis HL; Sehnke PC; Laughner B; Eyler JR; Powell DH; Ferl RJ
    Biochim Biophys Acta; 2007 Jul; 1774(7):866-73. PubMed ID: 17569603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The peripheral binding of 14-3-3γ to membranes involves isoform-specific histidine residues.
    Bustad HJ; Skjaerven L; Ying M; Halskau Ø; Baumann A; Rodriguez-Larrea D; Costas M; Underhaug J; Sanchez-Ruiz JM; Martinez A
    PLoS One; 2012; 7(11):e49671. PubMed ID: 23189152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rational Molecular Design of Potent PLK1 PBD Domain-binding Phosphopeptides Using Preferential Amino Acid Building Blocks.
    Mao XL; Wang KF; Zhu F; Pan ZH; Wu GM; Zhu HY
    Chem Biodivers; 2016 Aug; 13(8):1103-10. PubMed ID: 27450535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 14-3-3-Pred: improved methods to predict 14-3-3-binding phosphopeptides.
    Madeira F; Tinti M; Murugesan G; Berrett E; Stafford M; Toth R; Cole C; MacKintosh C; Barton GJ
    Bioinformatics; 2015 Jul; 31(14):2276-83. PubMed ID: 25735772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural analysis of 14-3-3 phosphopeptide complexes identifies a dual role for the nuclear export signal of 14-3-3 in ligand binding.
    Rittinger K; Budman J; Xu J; Volinia S; Cantley LC; Smerdon SJ; Gamblin SJ; Yaffe MB
    Mol Cell; 1999 Aug; 4(2):153-66. PubMed ID: 10488331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A study on the effect of synthetic α-to-β
    Andrei SA; Thijssen V; Brunsveld L; Ottmann C; Milroy LG
    Chem Commun (Camb); 2019 Dec; 55(98):14809-14812. PubMed ID: 31763628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Specificity of ε and non-ε isoforms of arabidopsis 14-3-3 proteins towards the H+-ATPase and other targets.
    Pallucca R; Visconti S; Camoni L; Cesareni G; Melino S; Panni S; Torreri P; Aducci P
    PLoS One; 2014; 9(6):e90764. PubMed ID: 24603559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Profiling Phosphopeptide-Binding Domain Recognition Specificity Using Peptide Microarrays.
    Tinti M; Panni S; Cesareni G
    Methods Mol Biol; 2017; 1518():177-193. PubMed ID: 27873207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recognition of a high-affinity phosphotyrosyl peptide by the Src homology-2 domain of p56lck.
    Eck MJ; Shoelson SE; Harrison SC
    Nature; 1993 Mar; 362(6415):87-91. PubMed ID: 7680435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A structural basis for 14-3-3sigma functional specificity.
    Wilker EW; Grant RA; Artim SC; Yaffe MB
    J Biol Chem; 2005 May; 280(19):18891-8. PubMed ID: 15731107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The variable C-terminus of 14-3-3 proteins mediates isoform-specific interaction with sucrose-phosphate synthase in the yeast two-hybrid system.
    Börnke F
    J Plant Physiol; 2005 Feb; 162(2):161-8. PubMed ID: 15779826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calorimetric examination of high-affinity Src SH2 domain-tyrosyl phosphopeptide binding: dissection of the phosphopeptide sequence specificity and coupling energetics.
    Bradshaw JM; Waksman G
    Biochemistry; 1999 Apr; 38(16):5147-54. PubMed ID: 10213620
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Divalent cation effects on interactions between multiple Arabidopsis 14-3-3 isoforms and phosphopeptide targets.
    Manak MS; Ferl RJ
    Biochemistry; 2007 Jan; 46(4):1055-63. PubMed ID: 17240989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mining Conditional Phosphorylation Motifs.
    Liu X; Wu J; Gong H; Deng S; He Z
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(5):915-27. PubMed ID: 26356863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A robust protocol to map binding sites of the 14-3-3 interactome: Cdc25C requires phosphorylation of both S216 and S263 to bind 14-3-3.
    Chan PM; Ng YW; Manser E
    Mol Cell Proteomics; 2011 Mar; 10(3):M110.005157. PubMed ID: 21189416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.