These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 26828706)

  • 61. Effect of Structure Hierarchy for Superhydrophobic Polymer Surfaces Studied by Droplet Evaporation.
    Okulova N; Johansen P; Christensen L; Taboryski R
    Nanomaterials (Basel); 2018 Oct; 8(10):. PubMed ID: 30322171
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Effects of geometrical characteristics of surface roughness on droplet wetting.
    Sheng YJ; Jiang S; Tsao HK
    J Chem Phys; 2007 Dec; 127(23):234704. PubMed ID: 18154406
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Surprising Lack of Influence on Water Droplet Motion by Hydrophilic Microdomains on Checkerboard-like Surfaces with Matched Contact Angle Hysteresis.
    Becher-Nienhaus B; Liu G; Archer RJ; Hozumi A
    Langmuir; 2020 Jul; 36(27):7835-7843. PubMed ID: 32579368
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Cassie-Levitated Droplets for Distortion-Free Low-Energy Solid-Liquid Interactions.
    Wong WSY; Tricoli A
    ACS Appl Mater Interfaces; 2018 Apr; 10(16):13999-14007. PubMed ID: 29617552
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Do liquid drops roll or slide on inclined surfaces?
    Thampi SP; Adhikari R; Govindarajan R
    Langmuir; 2013 Mar; 29(10):3339-46. PubMed ID: 23414059
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Conversion of surface energy and manipulation of a single droplet across micropatterned surfaces.
    Yang JT; Yang ZH; Chen CY; Yao DJ
    Langmuir; 2008 Sep; 24(17):9889-97. PubMed ID: 18683962
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Dynamic effects of bouncing water droplets on superhydrophobic surfaces.
    Jung YC; Bhushan B
    Langmuir; 2008 Jun; 24(12):6262-9. PubMed ID: 18479153
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Depinning-Induced Capillary Wave during the Sliding of a Droplet on a Textured Surface.
    Nguyen TV; Tsukagoshi T; Takahashi H; Matsumoto K; Shimoyama I
    Langmuir; 2016 Sep; 32(37):9523-9. PubMed ID: 27603591
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Receding Contact Line Motion on Nanopatterned and Micropatterned Polymer Surfaces.
    Gao N; Chiu M; Neto C
    Langmuir; 2017 Nov; 33(44):12602-12608. PubMed ID: 29016148
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Dynamic behavior of water droplets on solid surfaces with pillar-type nanostructures.
    Jeong WJ; Ha MY; Yoon HS; Ambrosia M
    Langmuir; 2012 Mar; 28(12):5360-71. PubMed ID: 22385413
    [TBL] [Abstract][Full Text] [Related]  

  • 71. How and When the Cassie-Baxter Droplet Starts to Slide on Textured Surfaces.
    Kim D; Ryu S
    Langmuir; 2020 Nov; 36(46):14031-14038. PubMed ID: 33175546
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Effect of surface depressions on wetting and interactions between hydrophobic pore array surfaces.
    Hansson PM; Hormozan Y; Brandner BD; Linnros J; Claesson PM; Swerin A; Schoelkopf J; Gane PA; Thormann E
    Langmuir; 2012 Jul; 28(30):11121-30. PubMed ID: 22769744
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Nanostructures increase water droplet adhesion on hierarchically rough superhydrophobic surfaces.
    Teisala H; Tuominen M; Aromaa M; Stepien M; Mäkelä JM; Saarinen JJ; Toivakka M; Kuusipalo J
    Langmuir; 2012 Feb; 28(6):3138-45. PubMed ID: 22263866
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Droplet evaporation on heated hydrophobic and superhydrophobic surfaces.
    Dash S; Garimella SV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):042402. PubMed ID: 24827255
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Influence of Gravity on the Sliding Angle of Water Drops on Nanopillared Superhydrophobic Surfaces.
    Li H; Yan T; Fichthorn KA
    Langmuir; 2020 Aug; 36(33):9916-9925. PubMed ID: 32787051
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Range of applicability of the Wenzel and Cassie-Baxter equations for superhydrophobic surfaces.
    Erbil HY; Cansoy CE
    Langmuir; 2009 Dec; 25(24):14135-45. PubMed ID: 19630435
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Electrowetting-based control of droplet transition and morphology on artificially microstructured surfaces.
    Bahadur V; Garimella SV
    Langmuir; 2008 Aug; 24(15):8338-45. PubMed ID: 18598067
    [TBL] [Abstract][Full Text] [Related]  

  • 78. An alternative method to implement contact angle boundary condition and its application in hybrid lattice-Boltzmann finite-difference simulations of two-phase flows with immersed surfaces.
    Huang JJ; Wu J; Huang H
    Eur Phys J E Soft Matter; 2018 Feb; 41(2):17. PubMed ID: 29404782
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Macroscopic theory for capillary-pressure hysteresis.
    Athukorallage B; Aulisa E; Iyer R; Zhang L
    Langmuir; 2015 Mar; 31(8):2390-7. PubMed ID: 25646688
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Mesoscopic model for microscale hydrodynamics and interfacial phenomena: slip, films, and contact-angle hysteresis.
    Colosqui CE; Kavousanakis ME; Papathanasiou AG; Kevrekidis IG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013302. PubMed ID: 23410455
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.