These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 26829015)

  • 1. Existence of Dirac cones in the Brillouin zone of diperiodic atomic crystals according to group theory.
    Damljanović V; Gajić R
    J Phys Condens Matter; 2016 Mar; 28(8):085502. PubMed ID: 26829015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Existence of semi-Dirac cones and symmetry of two-dimensional materials.
    Damljanović V; Gajić R
    J Phys Condens Matter; 2017 May; 29(18):185503. PubMed ID: 28260697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dirac cones in two-dimensional systems: from hexagonal to square lattices.
    Liu Z; Wang J; Li J
    Phys Chem Chem Phys; 2013 Nov; 15(43):18855-62. PubMed ID: 24084752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 'Parabolic' trapped modes and steered Dirac cones in platonic crystals.
    McPhedran RC; Movchan AB; Movchan NV; Brun M; Smith MJ
    Proc Math Phys Eng Sci; 2015 May; 471(2177):20140746. PubMed ID: 27547089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A 2D nonsymmorphic Dirac semimetal in a chemically modified group-VA monolayer with a black phosphorene structure.
    Jin KH; Huang H; Wang Z; Liu F
    Nanoscale; 2019 Apr; 11(15):7256-7262. PubMed ID: 30931465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Realization of Symmetry-Enforced Two-Dimensional Dirac Fermions in Nonsymmorphic α-Bismuthene.
    Kowalczyk PJ; Brown SA; Maerkl T; Lu Q; Chiu CK; Liu Y; Yang SA; Wang X; Zasada I; Genuzio F; Menteş TO; Locatelli A; Chiang TC; Bian G
    ACS Nano; 2020 Feb; 14(2):1888-1894. PubMed ID: 31971774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Beyond Dirac and Weyl fermions: Unconventional quasiparticles in conventional crystals.
    Bradlyn B; Cano J; Wang Z; Vergniory MG; Felser C; Cava RJ; Bernevig BA
    Science; 2016 Aug; 353(6299):aaf5037. PubMed ID: 27445310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dirac Semimetals in Two Dimensions.
    Young SM; Kane CL
    Phys Rev Lett; 2015 Sep; 115(12):126803. PubMed ID: 26431004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dirac cones in the spectrum of bond-decorated graphenes.
    Van den Heuvel W; Soncini A
    J Chem Phys; 2014 Jun; 140(23):234114. PubMed ID: 24952530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spin-1 Dirac-Weyl fermions protected by bipartite symmetry.
    Lin Z; Liu Z
    J Chem Phys; 2015 Dec; 143(21):214109. PubMed ID: 26646871
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dirac point movement and topological phase transition in patterned graphene.
    Dvorak M; Wu Z
    Nanoscale; 2015 Feb; 7(8):3645-50. PubMed ID: 25636026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-dimensional bilayer blue phosphorus Dirac-like material: a multi-orbital tight-binding investigation.
    Benhaij A; Mounkachi O
    Phys Chem Chem Phys; 2024 Sep; 26(35):23089-23102. PubMed ID: 39177041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Realization of unpinned two-dimensional dirac states in antimony atomic layers.
    Lu Q; Cook J; Zhang X; Chen KY; Snyder M; Nguyen DT; Reddy PVS; Qin B; Zhan S; Zhao LD; Kowalczyk PJ; Brown SA; Chiang TC; Yang SA; Chang TR; Bian G
    Nat Commun; 2022 Aug; 13(1):4603. PubMed ID: 35933407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Topological Dirac states in transition-metal monolayers on graphyne.
    Wang K; Zhang Y; Zhao W; Li P; Ding JW; Xie GF; Guo ZX
    Phys Chem Chem Phys; 2019 May; 21(18):9310-9316. PubMed ID: 30993296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Superstructure-Induced Splitting of Dirac Cones in Silicene.
    Feng B; Zhou H; Feng Y; Liu H; He S; Matsuda I; Chen L; Schwier EF; Shimada K; Meng S; Wu K
    Phys Rev Lett; 2019 May; 122(19):196801. PubMed ID: 31144949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Topological phase transition induced by magnetic proximity effect in two dimensions.
    Zeng Y; Wang L; Li S; He C; Zhong D; Yao DX
    J Phys Condens Matter; 2019 Oct; 31(39):395502. PubMed ID: 31185461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dirac cones in a snub trihexagonal tiling lattice with reflective symmetry breaking.
    Yang B; Zhang X; Wang A; Zhao M
    J Phys Condens Matter; 2019 Apr; 31(15):155001. PubMed ID: 30677002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spin-polarized Dirac cones and topological nontriviality in a metal-organic framework Ni2C24S6H12.
    Wei L; Zhang X; Zhao M
    Phys Chem Chem Phys; 2016 Mar; 18(11):8059-64. PubMed ID: 26923280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct evidence of interaction-induced Dirac cones in a monolayer silicene/Ag(111) system.
    Feng Y; Liu D; Feng B; Liu X; Zhao L; Xie Z; Liu Y; Liang A; Hu C; Hu Y; He S; Liu G; Zhang J; Chen C; Xu Z; Chen L; Wu K; Liu YT; Lin H; Huang ZQ; Hsu CH; Chuang FC; Bansil A; Zhou XJ
    Proc Natl Acad Sci U S A; 2016 Dec; 113(51):14656-14661. PubMed ID: 27930314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. InBi: A Ferroelastic Monolayer with Strain Tunable Spin-Orbit Dirac Points and Carrier Self-Doping Effect.
    Ding X; Ge Y; Jia Y; Gou G; Zhu Z; Zeng XC
    ACS Nano; 2022 Dec; 16(12):21546-21554. PubMed ID: 36449367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.