These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 26829154)

  • 21. Comparison of Frictional Properties of CVD-Grown MoS₂ and Graphene Films under Dry Sliding Conditions.
    Cho DH; Jung J; Kim C; Lee J; Oh SD; Kim KS; Lee C
    Nanomaterials (Basel); 2019 Feb; 9(2):. PubMed ID: 30791433
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nanoserpents: Graphene Nanoribbon Motion on Two-Dimensional Hexagonal Materials.
    Ouyang W; Mandelli D; Urbakh M; Hod O
    Nano Lett; 2018 Sep; 18(9):6009-6016. PubMed ID: 30109806
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Atomistic simulation of the load dependence of nanoscale friction on suspended and supported graphene.
    Ye Z; Martini A
    Langmuir; 2014 Dec; 30(49):14707-11. PubMed ID: 25419859
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Frictional properties of mixed fluorocarbon/hydrocarbon silane monolayers: a simulation study.
    Lewis JB; Vilt SG; Rivera JL; Jennings GK; McCabe C
    Langmuir; 2012 Oct; 28(40):14218-26. PubMed ID: 22937771
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Revisiting Frictional Characteristics of Graphene: Effect of In-Plane Straining.
    Xu C; Zhang S; Du H; Xue T; Kang Y; Zhang Y; Zhao P; Li Q
    ACS Appl Mater Interfaces; 2022 Sep; 14(36):41571-41576. PubMed ID: 36043243
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Superlow Friction of Graphite Induced by the Self-Assembly of Sodium Dodecyl Sulfate Molecular Layers.
    Li J; Luo J
    Langmuir; 2017 Nov; 33(44):12596-12601. PubMed ID: 29037037
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Origin of Nanoscale Friction Contrast between Supported Graphene, MoS
    Vazirisereshk MR; Ye H; Ye Z; Otero-de-la-Roza A; Zhao MQ; Gao Z; Johnson ATC; Johnson ER; Carpick RW; Martini A
    Nano Lett; 2019 Aug; 19(8):5496-5505. PubMed ID: 31267757
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Coexistence of Multilayered Phases of Confined Water: The Importance of Flexible Confining Surfaces.
    Ruiz Pestana L; Felberg LE; Head-Gordon T
    ACS Nano; 2018 Jan; 12(1):448-454. PubMed ID: 29236478
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nanomesh-Type Graphene Superlattice on Au(111) Substrate.
    Süle P; Szendrő M; Magda GZ; Hwang C; Tapasztó L
    Nano Lett; 2015 Dec; 15(12):8295-9. PubMed ID: 26560972
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Graphene Confers Ultralow Friction on Nanogear Cogs.
    Mescola A; Paolicelli G; Ogilvie SP; Guarino R; McHugh JG; Rota A; Iacob E; Gnecco E; Valeri S; Pugno NM; Gadhamshetty V; Rahman MM; Ajayan P; Dalton AB; Tripathi M
    Small; 2021 Nov; 17(47):e2104487. PubMed ID: 34676978
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural Superlubricity Based on Crystalline Materials.
    Song Y; Qu C; Ma M; Zheng Q
    Small; 2020 Apr; 16(15):e1903018. PubMed ID: 31670482
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Direct Observation of Incommensurate-Commensurate Transition in Graphene-hBN Heterostructures via Optical Second Harmonic Generation.
    Stepanov EA; Semin SV; Woods CR; Vandelli M; Kimel AV; Novoselov KS; Katsnelson MI
    ACS Appl Mater Interfaces; 2020 Jun; 12(24):27758-27764. PubMed ID: 32442370
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Controllable Friction on Graphene via Adjustable Interfacial Contact Quality.
    Wang W; Zhang Y; Li Z; Qian L
    Adv Sci (Weinh); 2023 Oct; 10(30):e2303013. PubMed ID: 37661586
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Approaches for Achieving Superlubricity in Two-Dimensional Materials.
    Berman D; Erdemir A; Sumant AV
    ACS Nano; 2018 Mar; 12(3):2122-2137. PubMed ID: 29522673
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Steric Effects Control Dry Friction of H- and F-Terminated Carbon Surfaces.
    Reichenbach T; Mayrhofer L; Kuwahara T; Moseler M; Moras G
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8805-8816. PubMed ID: 31971767
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Flexible Tuning of Friction on Atomically Thin Graphene.
    Zhao X; Zhang X; Chen R; Lang H; Peng Y
    ACS Appl Mater Interfaces; 2023 Feb; ():. PubMed ID: 36755369
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of a graphene substrate on the structure and properties of atomically thin metal sheets.
    Zhou G
    Phys Chem Chem Phys; 2020 Jan; 22(2):667-673. PubMed ID: 31829359
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fabrication of a graphene layer probe to measure force interactions in layered heterojunctions.
    Li J; Li J; Jiang L; Luo J
    Nanoscale; 2020 Mar; 12(9):5435-5443. PubMed ID: 32080698
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Anisotropy of Graphene Nanoflake Diamond Interface Frictional Properties.
    Zhang J; Osloub E; Siddiqui F; Zhang W; Ragab T; Basaran C
    Materials (Basel); 2019 May; 12(9):. PubMed ID: 31052418
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Size of graphene sheets determines the structural and mechanical properties of 3D graphene foams.
    Shen Z; Ye H; Zhou C; Kröger M; Li Y
    Nanotechnology; 2018 Mar; 29(10):104001. PubMed ID: 29311421
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.