These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 26829154)

  • 41. Size of graphene sheets determines the structural and mechanical properties of 3D graphene foams.
    Shen Z; Ye H; Zhou C; Kröger M; Li Y
    Nanotechnology; 2018 Mar; 29(10):104001. PubMed ID: 29311421
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Investigation of contact characteristics and frictional properties of natural articular cartilage at two different surface configurations.
    Qian S; Zhang L; Ni ZF; Huang C; Zhang D
    J Mater Sci Mater Med; 2017 Jun; 28(6):84. PubMed ID: 28447291
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mechanism of ultra low friction of multilayer graphene studied by coarse-grained molecular simulation.
    Washizu H; Kajita S; Tohyama M; Ohmori T; Nishino N; Teranishi H; Suzuki A
    Faraday Discuss; 2012; 156():279-91; discussion 293-309. PubMed ID: 23285635
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dynamic Fluid-Like Graphene with Ultralow Frictional Molecular Bearing.
    Jeon I; Park GH; Wang P; Li J; Hunter IW; Swager TM
    Adv Mater; 2019 Oct; 31(43):e1903195. PubMed ID: 31496001
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Stick-slip control in nanoscale boundary lubrication by surface wettability.
    Chen W; Foster AS; Alava MJ; Laurson L
    Phys Rev Lett; 2015 Mar; 114(9):095502. PubMed ID: 25793825
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The evolving quality of frictional contact with graphene.
    Li S; Li Q; Carpick RW; Gumbsch P; Liu XZ; Ding X; Sun J; Li J
    Nature; 2016 Nov; 539(7630):541-545. PubMed ID: 27882973
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Facile Fabrication of Large-Area Atomically Thin Membranes by Direct Synthesis of Graphene with Nanoscale Porosity.
    Kidambi PR; Nguyen GD; Zhang S; Chen Q; Kong J; Warner J; Li AP; Karnik R
    Adv Mater; 2018 Dec; 30(49):e1804977. PubMed ID: 30368941
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Non-equilibrium phase behavior and friction of confined molecular films under shear: A non-equilibrium molecular dynamics study.
    Maćkowiak S; Heyes DM; Dini D; Brańka AC
    J Chem Phys; 2016 Oct; 145(16):164704. PubMed ID: 27802615
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Layer-dependent anisotropic frictional behavior in two-dimensional monolayer hybrid perovskite/ITO layered heterojunctions.
    Bi S; Li Q; Yan Y; Asare-Yeboah K; Ma T; Tang C; Ouyang Z; He Z; Liu Y; Jiang C
    Phys Chem Chem Phys; 2019 Jan; 21(5):2540-2546. PubMed ID: 30656314
    [TBL] [Abstract][Full Text] [Related]  

  • 50. An Experimental Study of the Frictional Properties of Steel Sheets Using the Drawbead Simulator Test.
    Trzepiecinski T; Kubit A; Slota J; Fejkiel R
    Materials (Basel); 2019 Dec; 12(24):. PubMed ID: 31817286
    [TBL] [Abstract][Full Text] [Related]  

  • 51. In-Plane Potential Gradient Induces Low Frictional Energy Dissipation during the Stick-Slip Sliding on the Surfaces of 2D Materials.
    He F; Yang X; Bian Z; Xie G; Guo D; Luo J
    Small; 2019 Dec; 15(49):e1904613. PubMed ID: 31639269
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nanoscale frictional behavior of graphene on SiO₂ and Ni(111) substrates.
    Paolicelli G; Tripathi M; Corradini V; Candini A; Valeri S
    Nanotechnology; 2015 Feb; 26(5):055703. PubMed ID: 25581391
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Phononic Origins of Friction in Carbon Nanotube Oscillators.
    Prasad MV; Bhattacharya B
    Nano Lett; 2017 Apr; 17(4):2131-2137. PubMed ID: 28234012
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of the commensurability and disorder on friction for the system Xe/Cu.
    Franchini A; Bortolani V; Santoro G; Xheka K
    J Phys Condens Matter; 2011 Dec; 23(48):484004. PubMed ID: 22085886
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Edge length-dependent interlayer friction of graphene.
    Zhang H; Li Y; Qu J; Zhang J
    RSC Adv; 2020 Dec; 11(1):328-334. PubMed ID: 35423019
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Graphene-Graphene Interactions: Friction, Superlubricity, and Exfoliation.
    Sinclair RC; Suter JL; Coveney PV
    Adv Mater; 2018 Mar; 30(13):e1705791. PubMed ID: 29436032
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Superlubric sliding of graphene nanoflakes on graphene.
    Feng X; Kwon S; Park JY; Salmeron M
    ACS Nano; 2013 Feb; 7(2):1718-24. PubMed ID: 23327483
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Origin of Friction in Superlubric Graphite Contacts.
    Qu C; Wang K; Wang J; Gongyang Y; Carpick RW; Urbakh M; Zheng Q
    Phys Rev Lett; 2020 Sep; 125(12):126102. PubMed ID: 33016762
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Nanoscale friction and wear of a polymer coated with graphene.
    Vacher R; de Wijn AS
    Beilstein J Nanotechnol; 2022; 13():63-73. PubMed ID: 35096496
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Robust microscale superlubricity in graphite/hexagonal boron nitride layered heterojunctions.
    Song Y; Mandelli D; Hod O; Urbakh M; Ma M; Zheng Q
    Nat Mater; 2018 Oct; 17(10):894-899. PubMed ID: 30061730
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.