BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 26829203)

  • 1. Assays To Detect the Formation of Triphosphates of Unnatural Nucleotides: Application to Escherichia coli Nucleoside Diphosphate Kinase.
    Matsuura MF; Shaw RW; Moses JD; Kim HJ; Kim MJ; Kim MS; Hoshika S; Karalkar N; Benner SA
    ACS Synth Biol; 2016 Mar; 5(3):234-40. PubMed ID: 26829203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthetic Biology Pathway to Nucleoside Triphosphates for Expanded Genetic Alphabets.
    Li Y; Abraham C; Suslov O; Yaren O; Shaw RW; Kim MJ; Wan S; Marliere P; Benner SA
    ACS Synth Biol; 2023 Jun; 12(6):1772-1781. PubMed ID: 37227319
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Single Deoxynucleoside Kinase Variant from Drosophila melanogaster Synthesizes Monophosphates of Nucleosides That Are Components of an Expanded Genetic System.
    Matsuura MF; Winiger CB; Shaw RW; Kim MJ; Kim MS; Daugherty AB; Chen F; Moussatche P; Moses JD; Lutz S; Benner SA
    ACS Synth Biol; 2017 Mar; 6(3):388-394. PubMed ID: 27935283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biological phosphorylation of an Unnatural Base Pair (UBP) using a Drosophila melanogaster deoxynucleoside kinase (DmdNK) mutant.
    Chen F; Zhang Y; Daugherty AB; Yang Z; Shaw R; Dong M; Lutz S; Benner SA
    PLoS One; 2017; 12(3):e0174163. PubMed ID: 28323896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Tool for the Import of Natural and Unnatural Nucleoside Triphosphates into Bacteria.
    Feldman AW; Fischer EC; Ledbetter MP; Liao JY; Chaput JC; Romesberg FE
    J Am Chem Soc; 2018 Jan; 140(4):1447-1454. PubMed ID: 29338214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Artificially expanded genetic information system: a new base pair with an alternative hydrogen bonding pattern.
    Yang Z; Hutter D; Sheng P; Sismour AM; Benner SA
    Nucleic Acids Res; 2006; 34(21):6095-101. PubMed ID: 17074747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA polymerases engineered by directed evolution to incorporate non-standard nucleotides.
    Laos R; Thomson JM; Benner SA
    Front Microbiol; 2014; 5():565. PubMed ID: 25400626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recognition of an expanded genetic alphabet by type-II restriction endonucleases and their application to analyze polymerase fidelity.
    Chen F; Yang Z; Yan M; Alvarado JB; Wang G; Benner SA
    Nucleic Acids Res; 2011 May; 39(9):3949-61. PubMed ID: 21245035
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the 3' --> 5' exonuclease activity found in human nucleoside diphosphate kinase 1 (NDK1) and several of its homologues.
    Yoon JH; Singh P; Lee DH; Qiu J; Cai S; O'Connor TR; Chen Y; Shen B; Pfeifer GP
    Biochemistry; 2005 Dec; 44(48):15774-86. PubMed ID: 16313181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Directed evolution of polymerases to accept nucleotides with nonstandard hydrogen bond patterns.
    Laos R; Shaw R; Leal NA; Gaucher E; Benner S
    Biochemistry; 2013 Aug; 52(31):5288-94. PubMed ID: 23815560
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The structure of the Escherichia coli nucleoside diphosphate kinase reveals a new quaternary architecture for this enzyme family.
    Moynié L; Giraud MF; Georgescauld F; Lascu I; Dautant A
    Proteins; 2007 May; 67(3):755-65. PubMed ID: 17330300
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A semi-synthetic organism with an expanded genetic alphabet.
    Malyshev DA; Dhami K; Lavergne T; Chen T; Dai N; Foster JM; Corrêa IR; Romesberg FE
    Nature; 2014 May; 509(7500):385-8. PubMed ID: 24805238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A unified Watson-Crick geometry drives transcription of six-letter expanded DNA alphabets by E. coli RNA polymerase.
    Oh J; Shan Z; Hoshika S; Xu J; Chong J; Benner SA; Lyumkis D; Wang D
    Nat Commun; 2023 Dec; 14(1):8219. PubMed ID: 38086811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Escherichia coli nucleoside diphosphate kinase interactions with T4 phage proteins of deoxyribonucleotide synthesis and possible regulatory functions.
    Shen R; Olcott MC; Kim J; Rajagopal I; Mathews CK
    J Biol Chem; 2004 Jul; 279(31):32225-32. PubMed ID: 15169771
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemoenzymatic preparation of nucleoside triphosphates.
    Wu W; Bergstrom DE; Jo Davisson V
    Curr Protoc Nucleic Acid Chem; 2004 May; Chapter 13():Unit 13.2. PubMed ID: 18428922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Escherichia coli nucleoside diphosphate kinase mutants depend on translesion DNA synthesis to prevent mutagenesis.
    Nordman J; Wright A
    J Bacteriol; 2011 Sep; 193(17):4531-3. PubMed ID: 21725024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expanded Genetic Alphabets: Managing Nucleotides That Lack Tautomeric, Protonated, or Deprotonated Versions Complementary to Natural Nucleotides.
    Winiger CB; Shaw RW; Kim MJ; Moses JD; Matsuura MF; Benner SA
    ACS Synth Biol; 2017 Feb; 6(2):194-200. PubMed ID: 27648724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic functions of microbial nucleoside diphosphate kinases.
    Bernard MA; Ray NB; Olcott MC; Hendricks SP; Mathews CK
    J Bioenerg Biomembr; 2000 Jun; 32(3):259-67. PubMed ID: 11768309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of activities that interfere with the enzymatic assay of deoxyribonucleoside 5'-triphosphates.
    North TW; Bestwick RK; Mathews CK
    J Biol Chem; 1980 Jul; 255(14):6640-5. PubMed ID: 6248528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The human adenylate kinase 9 is a nucleoside mono- and diphosphate kinase.
    Amiri M; Conserva F; Panayiotou C; Karlsson A; Solaroli N
    Int J Biochem Cell Biol; 2013 May; 45(5):925-31. PubMed ID: 23416111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.