These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 26829203)
1. Assays To Detect the Formation of Triphosphates of Unnatural Nucleotides: Application to Escherichia coli Nucleoside Diphosphate Kinase. Matsuura MF; Shaw RW; Moses JD; Kim HJ; Kim MJ; Kim MS; Hoshika S; Karalkar N; Benner SA ACS Synth Biol; 2016 Mar; 5(3):234-40. PubMed ID: 26829203 [TBL] [Abstract][Full Text] [Related]
2. Synthetic Biology Pathway to Nucleoside Triphosphates for Expanded Genetic Alphabets. Li Y; Abraham C; Suslov O; Yaren O; Shaw RW; Kim MJ; Wan S; Marliere P; Benner SA ACS Synth Biol; 2023 Jun; 12(6):1772-1781. PubMed ID: 37227319 [TBL] [Abstract][Full Text] [Related]
3. A Single Deoxynucleoside Kinase Variant from Drosophila melanogaster Synthesizes Monophosphates of Nucleosides That Are Components of an Expanded Genetic System. Matsuura MF; Winiger CB; Shaw RW; Kim MJ; Kim MS; Daugherty AB; Chen F; Moussatche P; Moses JD; Lutz S; Benner SA ACS Synth Biol; 2017 Mar; 6(3):388-394. PubMed ID: 27935283 [TBL] [Abstract][Full Text] [Related]
4. Biological phosphorylation of an Unnatural Base Pair (UBP) using a Drosophila melanogaster deoxynucleoside kinase (DmdNK) mutant. Chen F; Zhang Y; Daugherty AB; Yang Z; Shaw R; Dong M; Lutz S; Benner SA PLoS One; 2017; 12(3):e0174163. PubMed ID: 28323896 [TBL] [Abstract][Full Text] [Related]
5. A Tool for the Import of Natural and Unnatural Nucleoside Triphosphates into Bacteria. Feldman AW; Fischer EC; Ledbetter MP; Liao JY; Chaput JC; Romesberg FE J Am Chem Soc; 2018 Jan; 140(4):1447-1454. PubMed ID: 29338214 [TBL] [Abstract][Full Text] [Related]
6. Artificially expanded genetic information system: a new base pair with an alternative hydrogen bonding pattern. Yang Z; Hutter D; Sheng P; Sismour AM; Benner SA Nucleic Acids Res; 2006; 34(21):6095-101. PubMed ID: 17074747 [TBL] [Abstract][Full Text] [Related]
7. DNA polymerases engineered by directed evolution to incorporate non-standard nucleotides. Laos R; Thomson JM; Benner SA Front Microbiol; 2014; 5():565. PubMed ID: 25400626 [TBL] [Abstract][Full Text] [Related]
8. Recognition of an expanded genetic alphabet by type-II restriction endonucleases and their application to analyze polymerase fidelity. Chen F; Yang Z; Yan M; Alvarado JB; Wang G; Benner SA Nucleic Acids Res; 2011 May; 39(9):3949-61. PubMed ID: 21245035 [TBL] [Abstract][Full Text] [Related]
9. Characterization of the 3' --> 5' exonuclease activity found in human nucleoside diphosphate kinase 1 (NDK1) and several of its homologues. Yoon JH; Singh P; Lee DH; Qiu J; Cai S; O'Connor TR; Chen Y; Shen B; Pfeifer GP Biochemistry; 2005 Dec; 44(48):15774-86. PubMed ID: 16313181 [TBL] [Abstract][Full Text] [Related]
10. Directed evolution of polymerases to accept nucleotides with nonstandard hydrogen bond patterns. Laos R; Shaw R; Leal NA; Gaucher E; Benner S Biochemistry; 2013 Aug; 52(31):5288-94. PubMed ID: 23815560 [TBL] [Abstract][Full Text] [Related]
11. The structure of the Escherichia coli nucleoside diphosphate kinase reveals a new quaternary architecture for this enzyme family. Moynié L; Giraud MF; Georgescauld F; Lascu I; Dautant A Proteins; 2007 May; 67(3):755-65. PubMed ID: 17330300 [TBL] [Abstract][Full Text] [Related]
12. A semi-synthetic organism with an expanded genetic alphabet. Malyshev DA; Dhami K; Lavergne T; Chen T; Dai N; Foster JM; Corrêa IR; Romesberg FE Nature; 2014 May; 509(7500):385-8. PubMed ID: 24805238 [TBL] [Abstract][Full Text] [Related]
13. A unified Watson-Crick geometry drives transcription of six-letter expanded DNA alphabets by E. coli RNA polymerase. Oh J; Shan Z; Hoshika S; Xu J; Chong J; Benner SA; Lyumkis D; Wang D Nat Commun; 2023 Dec; 14(1):8219. PubMed ID: 38086811 [TBL] [Abstract][Full Text] [Related]
14. Escherichia coli nucleoside diphosphate kinase interactions with T4 phage proteins of deoxyribonucleotide synthesis and possible regulatory functions. Shen R; Olcott MC; Kim J; Rajagopal I; Mathews CK J Biol Chem; 2004 Jul; 279(31):32225-32. PubMed ID: 15169771 [TBL] [Abstract][Full Text] [Related]
15. Chemoenzymatic preparation of nucleoside triphosphates. Wu W; Bergstrom DE; Jo Davisson V Curr Protoc Nucleic Acid Chem; 2004 May; Chapter 13():Unit 13.2. PubMed ID: 18428922 [TBL] [Abstract][Full Text] [Related]
16. Escherichia coli nucleoside diphosphate kinase mutants depend on translesion DNA synthesis to prevent mutagenesis. Nordman J; Wright A J Bacteriol; 2011 Sep; 193(17):4531-3. PubMed ID: 21725024 [TBL] [Abstract][Full Text] [Related]
17. Expanded Genetic Alphabets: Managing Nucleotides That Lack Tautomeric, Protonated, or Deprotonated Versions Complementary to Natural Nucleotides. Winiger CB; Shaw RW; Kim MJ; Moses JD; Matsuura MF; Benner SA ACS Synth Biol; 2017 Feb; 6(2):194-200. PubMed ID: 27648724 [TBL] [Abstract][Full Text] [Related]
18. Metabolic functions of microbial nucleoside diphosphate kinases. Bernard MA; Ray NB; Olcott MC; Hendricks SP; Mathews CK J Bioenerg Biomembr; 2000 Jun; 32(3):259-67. PubMed ID: 11768309 [TBL] [Abstract][Full Text] [Related]
19. Detection of activities that interfere with the enzymatic assay of deoxyribonucleoside 5'-triphosphates. North TW; Bestwick RK; Mathews CK J Biol Chem; 1980 Jul; 255(14):6640-5. PubMed ID: 6248528 [TBL] [Abstract][Full Text] [Related]
20. The human adenylate kinase 9 is a nucleoside mono- and diphosphate kinase. Amiri M; Conserva F; Panayiotou C; Karlsson A; Solaroli N Int J Biochem Cell Biol; 2013 May; 45(5):925-31. PubMed ID: 23416111 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]