BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

583 related articles for article (PubMed ID: 26829286)

  • 1. Corynebacterium glutamicum Metabolic Engineering with CRISPR Interference (CRISPRi).
    Cleto S; Jensen JV; Wendisch VF; Lu TK
    ACS Synth Biol; 2016 May; 5(5):375-85. PubMed ID: 26829286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RNA-guided single/double gene repressions in Corynebacterium glutamicum using an efficient CRISPR interference and its application to industrial strain.
    Park J; Shin H; Lee SM; Um Y; Woo HM
    Microb Cell Fact; 2018 Jan; 17(1):4. PubMed ID: 29316926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR interference-mediated metabolic engineering of Corynebacterium glutamicum for homo-butyrate production.
    Yoon J; Woo HM
    Biotechnol Bioeng; 2018 Aug; 115(8):2067-2074. PubMed ID: 29704438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR interference (CRISPRi) for gene regulation and succinate production in cyanobacterium S. elongatus PCC 7942.
    Huang CH; Shen CR; Li H; Sung LY; Wu MY; Hu YC
    Microb Cell Fact; 2016 Nov; 15(1):196. PubMed ID: 27846887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined genome editing and transcriptional repression for metabolic pathway engineering in Corynebacterium glutamicum using a catalytically active Cas12a.
    Liu W; Tang D; Wang H; Lian J; Huang L; Xu Z
    Appl Microbiol Biotechnol; 2019 Nov; 103(21-22):8911-8922. PubMed ID: 31583448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Co-production of l-Lysine and Heterologous Squalene in CRISPR/dCas9-Assisted
    Park J; Woo HM
    J Agric Food Chem; 2022 Nov; 70(46):14755-14760. PubMed ID: 36374274
    [No Abstract]   [Full Text] [Related]  

  • 7. Boosting Anaplerotic Reactions by Pyruvate Kinase Gene Deletion and Phosphoenolpyruvate Carboxylase Desensitization for Glutamic Acid and Lysine Production in Corynebacterium glutamicum.
    Yokota A; Sawada K; Wada M
    Adv Biochem Eng Biotechnol; 2017; 159():181-198. PubMed ID: 27872961
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redirecting Metabolic Flux via Combinatorial Multiplex CRISPRi-Mediated Repression for Isopentenol Production in Escherichia coli.
    Tian T; Kang JW; Kang A; Lee TS
    ACS Synth Biol; 2019 Feb; 8(2):391-402. PubMed ID: 30681833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rewiring Metabolic Flux in
    Yin L; Xi D; Shen Y; Ding N; Shao Q; Qian Y; Fang Y
    J Agric Food Chem; 2024 Feb; 72(6):3077-3087. PubMed ID: 38303604
    [No Abstract]   [Full Text] [Related]  

  • 10. Rapid identification of unknown carboxyl esterase activity in Corynebacterium glutamicum using RNA-guided CRISPR interference.
    Lee SS; Shin H; Jo S; Lee SM; Um Y; Woo HM
    Enzyme Microb Technol; 2018 Jul; 114():63-68. PubMed ID: 29685355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of CRISPR interference on strain development in biotechnology.
    Schultenkämper K; Brito LF; Wendisch VF
    Biotechnol Appl Biochem; 2020 Jan; 67(1):7-21. PubMed ID: 32064678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterologous Production of Squalene from Glucose in Engineered Corynebacterium glutamicum Using Multiplex CRISPR Interference and High-Throughput Fermentation.
    Park J; Yu BJ; Choi JI; Woo HM
    J Agric Food Chem; 2019 Jan; 67(1):308-319. PubMed ID: 30558416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPRi-Library-Guided Target Identification for Engineering Carotenoid Production by
    Göttl VL; Schmitt I; Braun K; Peters-Wendisch P; Wendisch VF; Henke NA
    Microorganisms; 2021 Mar; 9(4):. PubMed ID: 33805131
    [No Abstract]   [Full Text] [Related]  

  • 14. Enhanced Biosynthesis of Hyaluronic Acid Using Engineered Corynebacterium glutamicum Via Metabolic Pathway Regulation.
    Cheng F; Luozhong S; Guo Z; Yu H; Stephanopoulos G
    Biotechnol J; 2017 Oct; 12(10):. PubMed ID: 28869338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Applications of CRISPR/Cas System to Bacterial Metabolic Engineering.
    Cho S; Shin J; Cho BK
    Int J Mol Sci; 2018 Apr; 19(4):. PubMed ID: 29621180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimizing a CRISPR-Cpf1-based genome engineering system for Corynebacterium glutamicum.
    Zhang J; Yang F; Yang Y; Jiang Y; Huo YX
    Microb Cell Fact; 2019 Mar; 18(1):60. PubMed ID: 30909908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Triple deletion of clpC, porB, and mepA enhances production of small ubiquitin-like modifier-N-terminal pro-brain natriuretic peptide in Corynebacterium glutamicum.
    Peng F; Liu X; Wang X; Chen J; Liu M; Yang Y; Bai Z
    J Ind Microbiol Biotechnol; 2019 Jan; 46(1):67-79. PubMed ID: 30357503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic engineering of Corynebacterium glutamicum by synthetic small regulatory RNAs.
    Sun D; Chen J; Wang Y; Li M; Rao D; Guo Y; Chen N; Zheng P; Sun J; Ma Y
    J Ind Microbiol Biotechnol; 2019 Feb; 46(2):203-208. PubMed ID: 30666532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR interference as a titratable, trans-acting regulatory tool for metabolic engineering in the cyanobacterium Synechococcus sp. strain PCC 7002.
    Gordon GC; Korosh TC; Cameron JC; Markley AL; Begemann MB; Pfleger BF
    Metab Eng; 2016 Nov; 38():170-179. PubMed ID: 27481676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic engineering of Corynebacterium glutamicum for enhanced production of 5-aminovaleric acid.
    Shin JH; Park SH; Oh YH; Choi JW; Lee MH; Cho JS; Jeong KJ; Joo JC; Yu J; Park SJ; Lee SY
    Microb Cell Fact; 2016 Oct; 15(1):174. PubMed ID: 27717386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.