These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 26829287)

  • 21. Mycobacterium tuberculosis treatment modalities and recent insights.
    Sukhithasri V; Vinod V; Varma S; Biswas R
    Curr Drug Deliv; 2014; 11(6):744-52. PubMed ID: 24947482
    [TBL] [Abstract][Full Text] [Related]  

  • 22. New insights into the interaction of Mycobacterium tuberculosis and human macrophages.
    Bruns H; Stenger S
    Future Microbiol; 2014; 9(3):327-41. PubMed ID: 24762307
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Novel Approach in Treatment of Tuberculosis by Targeting Drugs to Infected Macrophages Using Biodegradable Nanoparticles.
    Shivangi ; Meena LS
    Appl Biochem Biotechnol; 2018 Jul; 185(3):815-821. PubMed ID: 29349532
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Defect in Autophagy Induction by Clinical Isolates of Mycobacterium Tuberculosis Is Correlated with Poor Tuberculosis Outcomes.
    Li F; Gao B; Xu W; Chen L; Xiong S
    PLoS One; 2016; 11(1):e0147810. PubMed ID: 26815035
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mycobacterium tuberculosis EsxO (Rv2346c) promotes bacillary survival by inducing oxidative stress mediated genomic instability in macrophages.
    Mohanty S; Dal Molin M; Ganguli G; Padhi A; Jena P; Selchow P; Sengupta S; Meuli M; Sander P; Sonawane A
    Tuberculosis (Edinb); 2016 Jan; 96():44-57. PubMed ID: 26786654
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Loperamide Restricts Intracellular Growth of Mycobacterium tuberculosis in Lung Macrophages.
    Juárez E; Carranza C; Sánchez G; González M; Chávez J; Sarabia C; Torres M; Sada E
    Am J Respir Cell Mol Biol; 2016 Dec; 55(6):837-847. PubMed ID: 27468130
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Immunoevasion and immunosuppression of the macrophage by Mycobacterium tuberculosis.
    Hmama Z; Peña-Díaz S; Joseph S; Av-Gay Y
    Immunol Rev; 2015 Mar; 264(1):220-32. PubMed ID: 25703562
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Potential and development of inhaled RNAi therapeutics for the treatment of pulmonary tuberculosis.
    Man DK; Chow MY; Casettari L; Gonzalez-Juarrero M; Lam JK
    Adv Drug Deliv Rev; 2016 Jul; 102():21-32. PubMed ID: 27108702
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Treatment of Mycobacterium tuberculosis-Infected Macrophages with Poly(Lactic-Co-Glycolic Acid) Microparticles Drives NFκB and Autophagy Dependent Bacillary Killing.
    Lawlor C; O'Connor G; O'Leary S; Gallagher PJ; Cryan SA; Keane J; O'Sullivan MP
    PLoS One; 2016; 11(2):e0149167. PubMed ID: 26894562
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Opportunities and Challenges for Host-Directed Therapies in Tuberculosis.
    Sachan M; Srivastava A; Ranjan R; Gupta A; Pandya S; Misra A
    Curr Pharm Des; 2016; 22(17):2599-604. PubMed ID: 26818871
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Host-directed drug therapy for tuberculosis.
    Guler R; Brombacher F
    Nat Chem Biol; 2015 Oct; 11(10):748-51. PubMed ID: 26379013
    [No Abstract]   [Full Text] [Related]  

  • 32. Ibrutinib suppresses intracellular mycobacterium tuberculosis growth by inducing macrophage autophagy.
    Hu Y; Wen Z; Liu S; Cai Y; Guo J; Xu Y; Lin D; Zhu J; Li D; Chen X
    J Infect; 2020 Jun; 80(6):e19-e26. PubMed ID: 32171871
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Host-Directed Therapeutics as a Novel Approach for Tuberculosis Treatment.
    Kim YR; Yang CS
    J Microbiol Biotechnol; 2017 Sep; 27(9):1549-1558. PubMed ID: 28683527
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Advancing host-directed therapy for tuberculosis.
    Wallis RS; Hafner R
    Nat Rev Immunol; 2015 Apr; 15(4):255-63. PubMed ID: 25765201
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modulation of autophagy as a strategy for development of new vaccine candidates against tuberculosis.
    Flores-Valdez MA; Segura-Cerda CA; Gaona-Bernal J
    Mol Immunol; 2018 May; 97():16-19. PubMed ID: 29547747
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inhaled therapies for tuberculosis and the relevance of activation of lung macrophages by particulate drug-delivery systems.
    Verma RK; Singh AK; Mohan M; Agrawal AK; Misra A
    Ther Deliv; 2011 Jun; 2(6):753-68. PubMed ID: 22822507
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Particulate pulmonary delivery systems containing anti-tuberculosis agents.
    Gupta A; Pandya SM; Mohammad I; Agrawal AK; Mohan M; Misra A
    Crit Rev Ther Drug Carrier Syst; 2013; 30(4):277-91. PubMed ID: 23662603
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Macrophage takeover and the host-bacilli interplay during tuberculosis.
    Hussain Bhat K; Mukhopadhyay S
    Future Microbiol; 2015; 10(5):853-72. PubMed ID: 26000654
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metformin as a host-directed therapeutic in tuberculosis: Is there a promise?
    Yew WW; Chang KC; Chan DP; Zhang Y
    Tuberculosis (Edinb); 2019 Mar; 115():76-80. PubMed ID: 30948180
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Small Molecule Mediated Restoration of Mitochondrial Function Augments Anti-Mycobacterial Activity of Human Macrophages Subjected to Cholesterol Induced Asymptomatic Dyslipidemia.
    Asalla S; Mohareer K; Banerjee S
    Front Cell Infect Microbiol; 2017; 7():439. PubMed ID: 29067283
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.