These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 26829392)

  • 41. Variation of the amino acid scores and of the nitrogen-to-protein conversion factors in barley grain as a function of nitrogen content as compared with wheat and rye.
    Huet JC; Baudet J; Bettaieb L; Kaab B; Mossé J
    Plant Foods Hum Nutr; 1988; 38(2):175-88. PubMed ID: 3200803
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Aspergillus ficuum phytase activity is inhibited by cereal grain components.
    Bekalu ZE; Madsen CK; Dionisio G; Brinch-Pedersen H
    PLoS One; 2017; 12(5):e0176838. PubMed ID: 28472144
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A comparison of contents of group A and B trichothecenes and microbial counts in different cereal species.
    Perkowski J; Stuper K; Buśko M; Góral T; Jeleń H; Wiwart M; Suchowilska E
    Food Addit Contam Part B Surveill; 2012; 5(3):151-9. PubMed ID: 24779779
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effects of grain species, genotype and starch quantity on the postprandial plasma amino acid response in horses.
    Bachmann M; Czetö A; Romanowski K; Vernunft A; Wensch-Dorendorf M; Wolf P; Metges CC; Zeyner A
    Res Vet Sci; 2018 Jun; 118():295-303. PubMed ID: 29547728
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Variability in nutrient composition of cereal grains from different origins.
    Lee J; Nam DS; Kong C
    Springerplus; 2016; 5():419. PubMed ID: 27099824
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mineral and Fatty Acid Content Variation in White Oat Genotypes Grown in Brazil.
    de Oliveira Maximino JV; Barros LM; Pereira RM; de Santi II; Aranha BC; Busanello C; Viana VE; Freitag RA; Batista BL; Costa de Oliveira A; Pegoraro C
    Biol Trace Elem Res; 2021 Mar; 199(3):1194-1206. PubMed ID: 32537719
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) multiple inositol polyphosphate phosphatases (MINPPs) are phytases expressed during grain filling and germination.
    Dionisio G; Holm PB; Brinch-Pedersen H
    Plant Biotechnol J; 2007 Mar; 5(2):325-38. PubMed ID: 17309687
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Influence of carbohydrate source on ruminal fermentation characteristics, performance, and microbial protein synthesis in dairy cows.
    Gozho GN; Mutsvangwa T
    J Dairy Sci; 2008 Jul; 91(7):2726-35. PubMed ID: 18565931
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Variation in the effects of take-all disease on grain yield and quality of winter cereals in field experiments.
    Gutteridge RJ; Bateman GL; Todd AD
    Pest Manag Sci; 2003 Feb; 59(2):215-24. PubMed ID: 12587875
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Novel insights into pericarp, protein body globoids of aleurone layer, starchy granules of three cereals gained using atomic force microscopy and environmental scanning electronic microscopy.
    Antonini E; Zara C; Valentini L; Gobbi P; Ninfali P; Menotta M
    Eur J Histochem; 2018 Feb; 62(1):2869. PubMed ID: 29569870
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Simultaneous iron, zinc, sulfur and phosphorus speciation analysis of barley grain tissues using SEC-ICP-MS and IP-ICP-MS.
    Persson DP; Hansen TH; Laursen KH; Schjoerring JK; Husted S
    Metallomics; 2009 Sep; 1(5):418-26. PubMed ID: 21305146
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Polyploidization-induced genome variation in triticale.
    Ma XF; Fang P; Gustafson JP
    Genome; 2004 Oct; 47(5):839-48. PubMed ID: 15499398
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Changes in time of sowing, flowering and maturity of cereals in Europe under climate change.
    Olesen JE; Børgesen CD; Elsgaard L; Palosuo T; Rötter RP; Skjelvåg AO; Peltonen-Sainio P; Börjesson T; Trnka M; Ewert F; Siebert S; Brisson N; Eitzinger J; van Asselt ED; Oberforster M; van der Fels-Klerx HJ
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2012; 29(10):1527-42. PubMed ID: 22934894
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The impact of short-term UV irradiation on grains of sensitive and tolerant cereal genotypes studied by EPR.
    Kurdziel M; Filek M; Łabanowska M
    J Sci Food Agric; 2018 May; 98(7):2607-2616. PubMed ID: 29064559
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Enzyme-linked immunosorbent assay for quantitation of cereal proteins toxic in coeliac disease.
    Friis SU
    Clin Chim Acta; 1988 Dec; 178(3):261-70. PubMed ID: 3240601
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Phosphorus utilization and characterization of excreta from swine fed diets containing a variety of cereal grains balanced for total phosphorus.
    Leytem AB; Thacker PA
    J Anim Sci; 2010 May; 88(5):1860-7. PubMed ID: 20118416
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Evidence of a Synergistic Effect between Pea Seed and Wheat Grain Endogenous Phytase Activities.
    Chouchene A; Micard V; Lullien-Pellerin V
    J Agric Food Chem; 2018 Nov; 66(45):12034-12041. PubMed ID: 30375224
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Feed preference in pigs: effect of cereal sources at different inclusion rates.
    Solà-Oriol D; Roura E; Torrallardona D
    J Anim Sci; 2009 Feb; 87(2):562-70. PubMed ID: 18952740
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Molecular Advances on Phytases in Barley and Wheat.
    Madsen CK; Brinch-Pedersen H
    Int J Mol Sci; 2019 May; 20(10):. PubMed ID: 31109025
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Comparison of lipid content and fatty acid composition and their distribution within seeds of 5 small grain species.
    Liu K
    J Food Sci; 2011 Mar; 76(2):C334-42. PubMed ID: 21535754
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.