BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 26829550)

  • 61. Multiple regions of Crumbs3 are required for tight junction formation in MCF10A cells.
    Fogg VC; Liu CJ; Margolis B
    J Cell Sci; 2005 Jul; 118(Pt 13):2859-69. PubMed ID: 15976445
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Production of a proteolytically active protein, chlamydial protease/proteasome-like activity factor, by five different Chlamydia species.
    Dong F; Zhong Y; Arulanandam B; Zhong G
    Infect Immun; 2005 Mar; 73(3):1868-72. PubMed ID: 15731091
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Chlamydia trachomatis CT771 (nudH) is an asymmetric Ap4A hydrolase.
    Barta ML; Lovell S; Sinclair AN; Battaile KP; Hefty PS
    Biochemistry; 2014 Jan; 53(1):214-24. PubMed ID: 24354275
    [TBL] [Abstract][Full Text] [Related]  

  • 64. PDZ-domain-directed basolateral targeting of the peripheral membrane protein FRMPD2 in epithelial cells.
    Stenzel N; Fetzer CP; Heumann R; Erdmann KS
    J Cell Sci; 2009 Sep; 122(Pt 18):3374-84. PubMed ID: 19706687
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Structural and functional analysis of the ligand specificity of the HtrA2/Omi PDZ domain.
    Zhang Y; Appleton BA; Wu P; Wiesmann C; Sidhu SS
    Protein Sci; 2007 Aug; 16(8):1738-50. PubMed ID: 17656586
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Neutralizing antichlamydial activity of complement by chlamydia-secreted protease CPAF.
    Yang Z; Tang L; Zhou Z; Zhong G
    Microbes Infect; 2016 Nov; 18(11):669-674. PubMed ID: 27436813
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Cloning and characterization of a secY homolog from Chlamydia trachomatis.
    Gu L; Remacha M; Wenman WM; Kaul R
    Mol Gen Genet; 1994 May; 243(4):482-7. PubMed ID: 8202093
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The structure of caseinolytic protease subunit ClpP2 reveals a functional model of the caseinolytic protease system from Chlamydia trachomatis.
    Azadmanesh J; Seleem MA; Struble L; Wood NA; Fisher DJ; Lovelace JJ; Artigues A; Fenton AW; Borgstahl GEO; Ouellette SP; Conda-Sheridan M
    J Biol Chem; 2023 Jan; 299(1):102762. PubMed ID: 36463962
    [TBL] [Abstract][Full Text] [Related]  

  • 69. PDZ domains: the building blocks regulating tumorigenesis.
    Subbaiah VK; Kranjec C; Thomas M; Banks L
    Biochem J; 2011 Oct; 439(2):195-205. PubMed ID: 21954943
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Structure and protein-protein interaction studies on Chlamydia trachomatis protein CT670 (YscO Homolog).
    Lorenzini E; Singer A; Singh B; Lam R; Skarina T; Chirgadze NY; Savchenko A; Gupta RS
    J Bacteriol; 2010 Jun; 192(11):2746-56. PubMed ID: 20348249
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Viral Interactions with PDZ Domain-Containing Proteins-An Oncogenic Trait?
    James CD; Roberts S
    Pathogens; 2016 Jan; 5(1):. PubMed ID: 26797638
    [TBL] [Abstract][Full Text] [Related]  

  • 72. PDZ Domains Across the Microbial World: Molecular Link to the Proteases, Stress Response, and Protein Synthesis.
    Muley VY; Akhter Y; Galande S
    Genome Biol Evol; 2019 Mar; 11(3):644-659. PubMed ID: 30698789
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Interactions of Severe Acute Respiratory Syndrome Coronavirus 2 Protein E With Cell Junctions and Polarity PSD-95/Dlg/ZO-1-Containing Proteins.
    Zhu Y; Alvarez F; Wolff N; Mechaly A; Brûlé S; Neitthoffer B; Etienne-Manneville S; Haouz A; Boëda B; Caillet-Saguy C
    Front Microbiol; 2022; 13():829094. PubMed ID: 35283834
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A path forward for the chlamydial virulence factor CPAF.
    A Conrad T; Yang Z; Ojcius D; Zhong G
    Microbes Infect; 2013 Dec; 15(14-15):1026-32. PubMed ID: 24141088
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Structural and sequence analysis of imelysin-like proteins implicated in bacterial iron uptake.
    Xu Q; Rawlings ND; Farr CL; Chiu HJ; Grant JC; Jaroszewski L; Klock HE; Knuth MW; Miller MD; Weekes D; Elsliger MA; Deacon AM; Godzik A; Lesley SA; Wilson IA
    PLoS One; 2011; 6(7):e21875. PubMed ID: 21799754
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Structural organization of precursors of thermolysin-like proteinases.
    Demidyuk IV; Gasanov EV; Safina DR; Kostrov SV
    Protein J; 2008 Sep; 27(6):343-54. PubMed ID: 18584316
    [TBL] [Abstract][Full Text] [Related]  

  • 77. 4-Chloroisocoumarins as Chlamydial Protease Inhibitors and Anti-Chlamydial Agents.
    Phillips MJA; Huston WM; McDonagh AM; Rawling T
    Molecules; 2024 Mar; 29(7):. PubMed ID: 38611800
    [TBL] [Abstract][Full Text] [Related]  

  • 78. CPR-C4 is a highly conserved novel protease from the Candidate Phyla Radiation with remote structural homology to human vasohibins.
    Cornish KAS; Lange J; Aevarsson A; Pohl E
    J Biol Chem; 2022 May; 298(5):101919. PubMed ID: 35405098
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The role of the chlamydial effector CPAF in the induction of genomic instability.
    Grieshaber SS; Grieshaber NA
    Pathog Dis; 2014 Oct; 72(1):5-6. PubMed ID: 25082267
    [No Abstract]   [Full Text] [Related]  

  • 80. Intra-ChIP: studying gene regulation in an intracellular pathogen.
    Hanson BR; Tan M
    Curr Genet; 2016 Aug; 62(3):547-51. PubMed ID: 26886234
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.