These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

435 related articles for article (PubMed ID: 26829639)

  • 1. Travel Time Estimation Using Freeway Point Detector Data Based on Evolving Fuzzy Neural Inference System.
    Tang J; Zou Y; Ash J; Zhang S; Liu F; Wang Y
    PLoS One; 2016; 11(2):e0147263. PubMed ID: 26829639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Data-based system modeling using a type-2 fuzzy neural network with a hybrid learning algorithm.
    Yeh CY; Jeng WH; Lee SJ
    IEEE Trans Neural Netw; 2011 Dec; 22(12):2296-309. PubMed ID: 22010148
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DCT-Yager FNN: a novel Yager-based fuzzy neural network with the discrete clustering technique.
    Singh A; Quek C; Cho SY
    IEEE Trans Neural Netw; 2008 Apr; 19(4):625-44. PubMed ID: 18390309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of double fuzzy clustering-driven context neural networks.
    Kim EH; Oh SK; Pedrycz W
    Neural Netw; 2018 Aug; 104():1-14. PubMed ID: 29689457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An on-line algorithm for creating self-organizing fuzzy neural networks.
    Leng G; Prasad G; McGinnity TM
    Neural Netw; 2004 Dec; 17(10):1477-93. PubMed ID: 15541949
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A neuro-fuzzy inference system through integration of fuzzy logic and extreme learning machines.
    Sun ZL; Au KF; Choi TM
    IEEE Trans Syst Man Cybern B Cybern; 2007 Oct; 37(5):1321-31. PubMed ID: 17926712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simplified interval type-2 fuzzy neural networks.
    Lin YY; Liao SH; Chang JY; Lin CT
    IEEE Trans Neural Netw Learn Syst; 2014 May; 25(5):959-69. PubMed ID: 24808041
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fuzzy jump wavelet neural network based on rule induction for dynamic nonlinear system identification with real data applications.
    Kharazihai Isfahani M; Zekri M; Marateb HR; MaƱanas MA
    PLoS One; 2019; 14(12):e0224075. PubMed ID: 31816627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolving compact and interpretable Takagi-Sugeno fuzzy models with a new encoding scheme.
    Kim MS; Kim CH; Lee JJ
    IEEE Trans Syst Man Cybern B Cybern; 2006 Oct; 36(5):1006-23. PubMed ID: 17036809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance evaluation of artificial intelligence paradigms-artificial neural networks, fuzzy logic, and adaptive neuro-fuzzy inference system for flood prediction.
    Tabbussum R; Dar AQ
    Environ Sci Pollut Res Int; 2021 May; 28(20):25265-25282. PubMed ID: 33453033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A TSK-type neurofuzzy network approach to system modeling problems.
    Ouyang CS; Lee WJ; Lee SJ
    IEEE Trans Syst Man Cybern B Cybern; 2005 Aug; 35(4):751-67. PubMed ID: 16128458
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and prediction of dynamic systems using an interactively recurrent self-evolving fuzzy neural network.
    Lin YY; Chang JY; Lin CT
    IEEE Trans Neural Netw Learn Syst; 2013 Feb; 24(2):310-21. PubMed ID: 24808284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel generic hebbian ordering-based fuzzy rule base reduction approach to mamdani neuro-fuzzy system.
    Liu F; Quek C; Ng GS
    Neural Comput; 2007 Jun; 19(6):1656-80. PubMed ID: 17444763
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive neural-based fuzzy modeling for biological systems.
    Wu SJ; Wu CT; Chang JY
    Math Biosci; 2013 Apr; 242(2):153-60. PubMed ID: 23376801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient Approach for RLS Type Learning in TSK Neural Fuzzy Systems.
    Yeh JW; Su SF
    IEEE Trans Cybern; 2017 Sep; 47(9):2343-2352. PubMed ID: 28055939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Takagi-Sugeno fuzzy models in the framework of orthonormal basis functions.
    Machado JB; Campello RJ; Amaral WC
    IEEE Trans Cybern; 2013 Jun; 43(3):858-70. PubMed ID: 23096073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative study of artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS) and multiple linear regression (MLR) for modeling of Cu (II) adsorption from aqueous solution using biochar derived from rambutan (Nephelium lappaceum) peel.
    Wong YJ; Arumugasamy SK; Chung CH; Selvarajoo A; Sethu V
    Environ Monit Assess; 2020 Jun; 192(7):439. PubMed ID: 32556670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Asymmetric subsethood-product fuzzy neural inference system (ASuPFuNIS).
    Velayutham CS; Kumar S
    IEEE Trans Neural Netw; 2005 Jan; 16(1):160-74. PubMed ID: 15732396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Research on air pollutant concentration prediction method based on self-adaptive neuro-fuzzy weighted extreme learning machine.
    Li Y; Jiang P; She Q; Lin G
    Environ Pollut; 2018 Oct; 241():1115-1127. PubMed ID: 30029320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of quantum-based adaptive neuro-fuzzy networks.
    Kim SS; Kwak KC
    IEEE Trans Syst Man Cybern B Cybern; 2010 Feb; 40(1):91-100. PubMed ID: 19622441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.