These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
275 related articles for article (PubMed ID: 26829650)
1. Enhanced poly(L-malic acid) production from pretreated cane molasses by Aureobasidium pullulans in fed-batch fermentation. Xia J; Xu J; Hu L; Liu X Prep Biochem Biotechnol; 2016 Nov; 46(8):798-802. PubMed ID: 26829650 [TBL] [Abstract][Full Text] [Related]
2. Production of poly(malic acid) from sugarcane juice in fermentation by Aureobasidium pullulans: Kinetics and process economics. Wei P; Cheng C; Lin M; Zhou Y; Yang ST Bioresour Technol; 2017 Jan; 224():581-589. PubMed ID: 27839861 [TBL] [Abstract][Full Text] [Related]
3. Polymalic acid fermentation by Aureobasidium pullulans for malic acid production from soybean hull and soy molasses: Fermentation kinetics and economic analysis. Cheng C; Zhou Y; Lin M; Wei P; Yang ST Bioresour Technol; 2017 Jan; 223():166-174. PubMed ID: 27792926 [TBL] [Abstract][Full Text] [Related]
4. Production of polymalic acid and malic acid by Aureobasidium pullulans fermentation and acid hydrolysis. Zou X; Zhou Y; Yang ST Biotechnol Bioeng; 2013 Aug; 110(8):2105-13. PubMed ID: 23436475 [TBL] [Abstract][Full Text] [Related]
5. Development and benefit evaluation of fermentation strategies for poly(malic acid) production from malt syrup by Aureobasidium melanogenum GXZ-6. Zeng W; Zhang B; Li M; Ding S; Chen G; Liang Z Bioresour Technol; 2019 Feb; 274():479-487. PubMed ID: 30553959 [TBL] [Abstract][Full Text] [Related]
6. Economical production of poly(ε-l-lysine) and poly(l-diaminopropionic acid) using cane molasses and hydrolysate of streptomyces cells by Streptomyces albulus PD-1. Xia J; Xu Z; Xu H; Liang J; Li S; Feng X Bioresour Technol; 2014 Jul; 164():241-7. PubMed ID: 24861999 [TBL] [Abstract][Full Text] [Related]
7. Economic co-production of poly(malic acid) and pullulan from Jerusalem artichoke tuber by Aureobasidium pullulans HA-4D. Xia J; Xu J; Liu X; Xu J; Wang X; Li X BMC Biotechnol; 2017 Feb; 17(1):20. PubMed ID: 28231788 [TBL] [Abstract][Full Text] [Related]
8. Cofactor and CO2 donor regulation involved in reductive routes for polymalic acid production by Aureobasidium pullulans CCTCC M2012223. Zou X; Tu G; Zan Z Bioprocess Biosyst Eng; 2014 Oct; 37(10):2131-6. PubMed ID: 24700133 [TBL] [Abstract][Full Text] [Related]
9. Butyric acid fermentation in a fibrous bed bioreactor with immobilized Clostridium tyrobutyricum from cane molasses. Jiang L; Wang J; Liang S; Wang X; Cen P; Xu Z Bioresour Technol; 2009 Jul; 100(13):3403-9. PubMed ID: 19297150 [TBL] [Abstract][Full Text] [Related]
10. Enhanced production of Ca²⁺-polymalate (PMA) with high molecular mass by Aureobasidium pullulans var. pullulans MCW. Wang YK; Chi Z; Zhou HX; Liu GL; Chi ZM Microb Cell Fact; 2015 Aug; 14():115. PubMed ID: 26249335 [TBL] [Abstract][Full Text] [Related]
11. High-level production of poly (β-L: -malic acid) with a new isolated Aureobasidium pullulans strain. Zhang H; Cai J; Dong J; Zhang D; Huang L; Xu Z; Cen P Appl Microbiol Biotechnol; 2011 Oct; 92(2):295-303. PubMed ID: 21655983 [TBL] [Abstract][Full Text] [Related]
12. Efficient Production of Polymalic Acid by a Novel Isolated Aureobasidium pullulans Using Metabolic Intermediates and Inhibitors. Zeng W; Zhang B; Chen G; Li M; Liang Z Appl Biochem Biotechnol; 2019 Feb; 187(2):612-627. PubMed ID: 30014335 [TBL] [Abstract][Full Text] [Related]
13. Efficient production of l-lactic acid using co-feeding strategy based on cane molasses/glucose carbon sources. Xu K; Xu P Bioresour Technol; 2014 Feb; 153():23-9. PubMed ID: 24333698 [TBL] [Abstract][Full Text] [Related]
14. Production and characterization of pullulan from beet molasses using a nonpigmented strain of Aureobasidium pullulans in batch culture. Lazaridou A; Biliaderis CG; Roukas T; Izydorczyk M Appl Biochem Biotechnol; 2002 Jan; 97(1):1-22. PubMed ID: 11900113 [TBL] [Abstract][Full Text] [Related]
15. Analysis of the L-malate biosynthesis pathway involved in poly(β-L-malic acid) production in Aureobasidium melanogenum GXZ-6 by addition of metabolic intermediates and inhibitors. Zeng W; Zhang B; Liu Q; Chen G; Liang Z J Microbiol; 2019 Apr; 57(4):281-287. PubMed ID: 30721461 [TBL] [Abstract][Full Text] [Related]
16. Biosynthesis of polymalic acid in fermentation: advances and prospects for industrial application. Zou X; Cheng C; Feng J; Song X; Lin M; Yang ST Crit Rev Biotechnol; 2019 May; 39(3):408-421. PubMed ID: 30741018 [TBL] [Abstract][Full Text] [Related]
17. Engineering the reductive tricarboxylic acid pathway in Aureobasidium pullulans for enhanced biosynthesis of poly-L-malic acid. Qin Z; Feng J; Li Y; Zheng Y; Moore C; Yang ST Bioresour Technol; 2024 Feb; 393():130122. PubMed ID: 38040309 [TBL] [Abstract][Full Text] [Related]
18. Poly(malic acid) production from liquefied corn starch by simultaneous saccharification and fermentation with a novel isolated Aureobasidium pullulans GXL-1 strain and its techno-economic analysis. Zeng W; Zhang B; Jiang L; Liu Y; Ding S; Chen G; Liang Z Bioresour Technol; 2020 May; 304():122990. PubMed ID: 32078901 [TBL] [Abstract][Full Text] [Related]
19. Metabolome- and genome-scale model analyses for engineering of Feng J; Yang J; Yang W; Chen J; Jiang M; Zou X Biotechnol Biofuels; 2018; 11():94. PubMed ID: 29632554 [TBL] [Abstract][Full Text] [Related]
20. Intensification of β-poly(L: -malic acid) production by Aureobasidium pullulans ipe-1 in the late exponential growth phase. Cao W; Luo J; Zhao J; Qiao C; Ding L; Qi B; Su Y; Wan Y J Ind Microbiol Biotechnol; 2012 Jul; 39(7):1073-80. PubMed ID: 22395899 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]