These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 26829707)

  • 1. High-Performance Microchanneled Asymmetric Gd(0.1)Ce(0.9)O(1.95-δ)-La(0.6)Sr(0.4)FeO(3-δ)-Based Membranes for Oxygen Separation.
    Cheng S; Huang H; Ovtar S; Simonsen SB; Chen M; Zhang W; Søgaard M; Kaiser A; Hendriksen PV; Chen C
    ACS Appl Mater Interfaces; 2016 Feb; 8(7):4548-60. PubMed ID: 26829707
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced oxygen separation through robust freeze-cast bilayered dual-phase membranes.
    Gaudillere C; Garcia-Fayos J; Balaguer M; Serra JM
    ChemSusChem; 2014 Sep; 7(9):2554-61. PubMed ID: 25070608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A mixed ionic and electronic conducting dual-phase membrane with high oxygen permeability.
    Fang W; Liang F; Cao Z; Steinbach F; Feldhoff A
    Angew Chem Int Ed Engl; 2015 Apr; 54(16):4847-50. PubMed ID: 25706102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing the oxygen permeation rate of Zr(0.84)Y(0.16)O(1.92)-La(0.8)Sr(0.2)Cr(0.5)Fe(0.5)O(3-δ) dual-phase hollow fiber membrane by coating with Ce(0.8)Sm(0.2)O(1.9) nanoparticles.
    Liu T; Wang Y; Yuan R; Gao J; Chen C; Bouwmeester HJ
    ACS Appl Mater Interfaces; 2013 Oct; 5(19):9454-60. PubMed ID: 24020639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-flux oxygen-transporting membrane Pr(0.6)Sr(0.4)Co(0.5)Fe(0.5)O(3-δ): CO2 stability and microstructure.
    Partovi K; Liang F; Ravkina O; Caro J
    ACS Appl Mater Interfaces; 2014 Jul; 6(13):10274-82. PubMed ID: 24901940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel Approach for Developing Dual-Phase Ceramic Membranes for Oxygen Separation through Beneficial Phase Reaction.
    Zhang Z; Zhou W; Chen Y; Chen D; Chen J; Liu S; Jin W; Shao Z
    ACS Appl Mater Interfaces; 2015 Oct; 7(41):22918-26. PubMed ID: 26419767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel cobalt-free, CO2-stable, and reduction-tolerant dual-phase oxygen-permeable membrane.
    Wang Z; Sun W; Zhu Z; Liu T; Liu W
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):11038-43. PubMed ID: 24131378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface modification of La(0.8)Sr(0.2)CrO(3-δ)-YSZ dual-phase membranes for syngas production.
    Yu AS; Oh TS; Zhu R; Gallegos A; Gorte RJ; Vohs JM
    Faraday Discuss; 2015; 182():213-25. PubMed ID: 26211722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substantial Oxygen Flux in Dual-Phase Membrane of Ceria and Pure Electronic Conductor by Tailoring the Surface.
    Joo JH; Yun KS; Kim JH; Lee Y; Yoo CY; Yu JH
    ACS Appl Mater Interfaces; 2015 Jul; 7(27):14699-707. PubMed ID: 26083529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual-Phase Oxygen Transport Membranes for Stable Operation in Environments Containing Carbon Dioxide and Sulfur Dioxide.
    Garcia-Fayos J; Balaguer M; Serra JM
    ChemSusChem; 2015 Dec; 8(24):4242-9. PubMed ID: 26586419
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elucidation of the Oxygen Surface Kinetics in a Coated Dual-Phase Membrane for Enhancing Oxygen Permeation Flux.
    Na BT; Park JH; Park JH; Yu JH; Joo JH
    ACS Appl Mater Interfaces; 2017 Jun; 9(23):19917-19924. PubMed ID: 28548486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing the oxygen permeability of BaCo(0.7)Fe(0.2)Nb(0.1)O(3-δ) membranes by coating GdBaCo(2-x)Fe(x)O(5+δ) for partial oxidation of coke oven gas to syngas.
    Cheng H; Liu J; Lu X; Ding W
    ACS Appl Mater Interfaces; 2011 Oct; 3(10):4032-9. PubMed ID: 21928838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of the interfacial phase on the structural integrity and oxygen permeability of a dual-phase membrane.
    Sun M; Chen X; Hong L
    ACS Appl Mater Interfaces; 2013 Sep; 5(18):9067-74. PubMed ID: 23977996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Composite fuel electrode La(0.2)Sr(0.8)TiO(3-δ)-Ce(0.8)Sm(0.2)O(2-δ) for electrolysis of CO2 in an oxygen-ion conducting solid oxide electrolyser.
    Li Y; Zhou J; Dong D; Wang Y; Jiang JZ; Xiang H; Xie K
    Phys Chem Chem Phys; 2012 Nov; 14(44):15547-53. PubMed ID: 23073153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methane partial oxidation using FeO(x)@La(0.8)Sr(0.2)FeO(3-δ) core-shell catalyst--transient pulse studies.
    Shafiefarhood A; Hamill JC; Neal LM; Li F
    Phys Chem Chem Phys; 2015 Dec; 17(46):31297-307. PubMed ID: 26549423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Co
    Laqdiem M; Garcia-Fayos J; Carrillo AJ; Almar L; Balaguer M; Fabuel M; Serra JM
    ACS Appl Energy Mater; 2024 Jan; 7(1):302-311. PubMed ID: 38213555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined investigation of bulk diffusion and surface exchange parameters of silver catalyst coated yttrium-doped BSCF membranes.
    Haworth PF; Smart S; Serra JM; Diniz da Costa JC
    Phys Chem Chem Phys; 2012 Jul; 14(25):9104-11. PubMed ID: 22644312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ethylene production by ODHE in catalytically modified Ba(0.5)Sr(0.5)Co(0.8)Fe(0.2)O(3-δ) membrane reactors.
    Lobera MP; Escolástico S; Garcia-Fayos J; Serra JM
    ChemSusChem; 2012 Aug; 5(8):1587-96. PubMed ID: 22791570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methane oxidation over mixed-conducting SrFe(Al)O3-delta-SrAl2O4 composite.
    Yaremchenko AA; Kharton VV; Valente AA; Veniaminov SA; Belyaev VD; Sobyanin VA; Marques FM
    Phys Chem Chem Phys; 2007 Jun; 9(21):2744-52. PubMed ID: 17627318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Localization of oxygen interstitials in CeSrGa3O(7+δ) melilite.
    Xu J; Kuang X; Véron E; Allix M; Suchomel MR; Porcher F; Liang C; Pan F; Wu M
    Inorg Chem; 2014 Nov; 53(21):11589-97. PubMed ID: 25303629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.