These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 26829724)
1. [Application of eight-probe fluorescence in situ hybridization and R-banding karyotype analysis for the diagnosis of acute lymphoblastic leukemia]. Zhao D; Liu S; Guo Z; Li R Zhonghua Yi Xue Yi Chuan Xue Za Zhi; 2016 Feb; 33(1):9-12. PubMed ID: 26829724 [TBL] [Abstract][Full Text] [Related]
2. [Cytogenetic differences between adults and children with acute lymphoblastic leukemia: eight-probe fluorescence in situ hybridization and karyotype analyses]. Zuo Y; Du Q; Li R; Xu N; Cao R; Liao L; Xu L; Zhang J; Huang B; Luo X; Xiao X; Liu X Nan Fang Yi Ke Da Xue Xue Bao; 2012 May; 32(5):707-9. PubMed ID: 22588930 [TBL] [Abstract][Full Text] [Related]
3. Spectral karyotyping and interphase FISH reveal abnormalities not detected by conventional G-banding. Implications for treatment stratification of childhood acute lymphoblastic leukaemia: detailed analysis of 70 cases. Nordgren A; Heyman M; Sahlén S; Schoumans J; Söderhäll S; Nordenskjöld M; Blennow E Eur J Haematol; 2002 Jan; 68(1):31-41. PubMed ID: 11952819 [TBL] [Abstract][Full Text] [Related]
4. [Cytogenetic and FISH findings are complementary in childhood ALL]. Haltrich I; Csóka M; Kovács G; Fekete G Magy Onkol; 2008 Sep; 52(3):283-91. PubMed ID: 18845499 [TBL] [Abstract][Full Text] [Related]
5. Detection of recurrent cytogenetic abnormalities in acute lymphoblastic and myeloid leukemias using fluorescence in situ hybridization. Vance GH Methods Mol Biol; 2013; 999():79-91. PubMed ID: 23666691 [TBL] [Abstract][Full Text] [Related]
6. [Clinical utility of fluorescence in-situ hybridization profile test in detecting genetic aberrations in acute leukemia]. Kim SR; Kim HJ; Kim SH Korean J Lab Med; 2009 Oct; 29(5):371-8. PubMed ID: 19893343 [TBL] [Abstract][Full Text] [Related]
7. Hidden aberrations diagnosed by interphase fluorescence in situ hybridisation and spectral karyotyping in childhood acute lymphoblastic leukaemia. Nordgren A Leuk Lymphoma; 2003 Dec; 44(12):2039-53. PubMed ID: 14959846 [TBL] [Abstract][Full Text] [Related]
8. [Application of three-probe fluorescence in situ hybridization panel in the diagnosis of pediatric B cell acute lymphoblastic leukemia]. Fan J; Li C; Zhao J; Gong J; Zheng Y; Ru K Zhonghua Xue Ye Xue Za Zhi; 2014 Jun; 35(6):542-5. PubMed ID: 24985181 [TBL] [Abstract][Full Text] [Related]
9. Chromosomal changes detected by fluorescence in situ hybridization in patients with acute lymphoblastic leukemia. Zhang L; Parkhurst JB; Kern WF; Scott KV; Niccum D; Mulvihill JJ; Li S Chin Med J (Engl); 2003 Sep; 116(9):1298-303. PubMed ID: 14527352 [TBL] [Abstract][Full Text] [Related]
10. [Cytogenetic analysis of childhood acute lymphoblastic leukemia]. Liu Q; Jiang H; Sun HJ; Song YJ; Bao LM Zhonghua Xue Ye Xue Za Zhi; 2012 Apr; 33(4):282-5. PubMed ID: 22781718 [TBL] [Abstract][Full Text] [Related]
12. IGH gene involvement in two cases of acute lymphoblastic leukemia with t(14;14)(q11;q32) identified by sequential R-banding and fluorescence in situ hybridization. Liu S; Bo L; Liu X; Li C; Qin S; Wang J Cancer Genet Cytogenet; 2004 Jul; 152(2):141-5. PubMed ID: 15262434 [TBL] [Abstract][Full Text] [Related]
13. Structure and significance of cytogenetic abnormalities in adult patients with Ph-negative acute lymphoblastic leukemia. Piskunova IS; Obukhova TN; Parovichnikova EN; Kulikov SM; Troitskaya VV; Gavrilina OA; Savchenko VG Ter Arkh; 2018 Aug; 90(7):30-37. PubMed ID: 30701920 [TBL] [Abstract][Full Text] [Related]
14. Karyotype refinement by multicolor fluorescence in situ hybridization analysis in 18 patients with acute lymphoblastic leukemia. Calabrese G; Taraborelli T; Fantasia D; Guanciali Franchi P; Spadano A; Palka G Haematologica; 2002 Aug; 87(8):888-9. PubMed ID: 12161369 [No Abstract] [Full Text] [Related]
15. Interphase fluorescence in situ hybridization and spectral karyotyping reveals hidden genetic aberrations in children with acute lymphoblastic leukaemia and a normal banded karyotype. Nordgren A; Schoumans J; Söderhäll S; Nordenskjöld M; Blennow E Br J Haematol; 2001 Sep; 114(4):786-93. PubMed ID: 11564064 [TBL] [Abstract][Full Text] [Related]
16. [Establishment and application of multiplex FISH in detection of the complex chromosome abnormalities in leukemia]. Zhao M; Chen B; Wang L; Xu L; Cao Q; Su X; Chen S Zhonghua Yi Xue Yi Chuan Xue Za Zhi; 2002 Oct; 19(5):375-8. PubMed ID: 12362309 [TBL] [Abstract][Full Text] [Related]
17. FISH, CGH, and SKY in the diagnosis of childhood acute lymphoblastic leukemia. Mathew S; Raimondi SC Methods Mol Biol; 2003; 220():213-33. PubMed ID: 12744216 [No Abstract] [Full Text] [Related]
18. Fluorescence in situ hybridization study of TEL/AML1 fusion and other abnormalities involving TEL and AML1 genes. Correlation with cytogenetic findings and prognostic value in children with acute lymphocytic leukemia. Martínez-Ramírez A; Urioste M; Contra T; Cantalejo A; Tavares A; Portero JA; López-Ibor B; Bernacer M; Soto C; Cigudosa JC; Benítez J Haematologica; 2001 Dec; 86(12):1245-53. PubMed ID: 11726315 [TBL] [Abstract][Full Text] [Related]
19. Novel cryptic chromosomal rearrangements detected in acute lymphoblastic leukemia detected by application of new multicolor fluorescent in situ hybridization approaches. Karst C; Gross M; Haase D; Wedding U; Höffken K; Liehr T; Mkrtchyan H Int J Oncol; 2006 Apr; 28(4):891-7. PubMed ID: 16525638 [TBL] [Abstract][Full Text] [Related]
20. [A clinical and laboratory study of 11 cases of t(6;11)(q27;q23) acute leukemia]. Pan JL; Xue YQ; Jiang HY; Li TY; Wang Y; Qian J; Wu YF; Wu TQ Zhonghua Nei Ke Za Zhi; 2004 Dec; 43(12):920-3. PubMed ID: 15730738 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]