BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

553 related articles for article (PubMed ID: 26829794)

  • 1. State of the Art and Future Directions for Lower Limb Robotic Exoskeletons.
    Young AJ; Ferris DP
    IEEE Trans Neural Syst Rehabil Eng; 2017 Feb; 25(2):171-182. PubMed ID: 26829794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rehabilitative Soft Exoskeleton for Rodents.
    Florez JM; Shah M; Moraud EM; Wurth S; Baud L; Von Zitzewitz J; van den Brand R; Micera S; Courtine G; Paik J
    IEEE Trans Neural Syst Rehabil Eng; 2017 Feb; 25(2):107-118. PubMed ID: 28113858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exoskeleton and End-Effector Robots for Upper and Lower Limbs Rehabilitation: Narrative Review.
    Molteni F; Gasperini G; Cannaviello G; Guanziroli E
    PM R; 2018 Sep; 10(9 Suppl 2):S174-S188. PubMed ID: 30269804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Upper-Limb Robotic Exoskeletons for Neurorehabilitation: A Review on Control Strategies.
    Proietti T; Crocher V; Roby-Brami A; Jarrasse N
    IEEE Rev Biomed Eng; 2016; 9():4-14. PubMed ID: 27071194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brain-machine interfaces for controlling lower-limb powered robotic systems.
    He Y; Eguren D; Azorín JM; Grossman RG; Luu TP; Contreras-Vidal JL
    J Neural Eng; 2018 Apr; 15(2):021004. PubMed ID: 29345632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robust Control of a Cable-Driven Soft Exoskeleton Joint for Intrinsic Human-Robot Interaction.
    Jarrett C; McDaid AJ
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jul; 25(7):976-986. PubMed ID: 28278475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exoskeleton robots for lower limb assistance: A review of materials, actuation, and manufacturing methods.
    Hussain F; Goecke R; Mohammadian M
    Proc Inst Mech Eng H; 2021 Dec; 235(12):1375-1385. PubMed ID: 34254562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Not Available].
    Klamroth-Marganska V; Riener R
    Ther Umsch; 2017; 74(9):524-528. PubMed ID: 29583094
    [No Abstract]   [Full Text] [Related]  

  • 9. A Magnetic Resonance Compatible Soft Wearable Robotic Glove for Hand Rehabilitation and Brain Imaging.
    Hong Kai Yap ; Kamaldin N; Jeong Hoon Lim ; Nasrallah FA; Goh JCH; Chen-Hua Yeow
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):782-793. PubMed ID: 28113591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The-state-of-the-art of soft robotics to assist mobility: a review of physiotherapist and patient identified limitations of current lower-limb exoskeletons and the potential soft-robotic solutions.
    Morris L; Diteesawat RS; Rahman N; Turton A; Cramp M; Rossiter J
    J Neuroeng Rehabil; 2023 Jan; 20(1):18. PubMed ID: 36717869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A review of methods for achieving upper limb movement following spinal cord injury through hybrid muscle stimulation and robotic assistance.
    Dunkelberger N; Schearer EM; O'Malley MK
    Exp Neurol; 2020 Jun; 328():113274. PubMed ID: 32145251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Voluntary control of wearable robotic exoskeletons by patients with paresis via neuromechanical modeling.
    Durandau G; Farina D; Asín-Prieto G; Dimbwadyo-Terrer I; Lerma-Lara S; Pons JL; Moreno JC; Sartori M
    J Neuroeng Rehabil; 2019 Jul; 16(1):91. PubMed ID: 31315633
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ROBOT - Assisted Rehabilitation in Patients After Stroke.
    Kefaliakos A; Pliakos I; Kalokerinou A; Mechili A; Diomidous M
    Stud Health Technol Inform; 2014; 202():316. PubMed ID: 25000084
    [No Abstract]   [Full Text] [Related]  

  • 14. Design and Evaluation of a Soft and Wearable Robotic Glove for Hand Rehabilitation.
    Biggar S; Yao W
    IEEE Trans Neural Syst Rehabil Eng; 2016 Oct; 24(10):1071-1080. PubMed ID: 26829796
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bio-inspired control of joint torque and knee stiffness in a robotic lower limb exoskeleton using a central pattern generator.
    Schrade SO; Nager Y; Wu AR; Gassert R; Ijspeert A
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1387-1394. PubMed ID: 28814014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Running With an Elastic Lower Limb Exoskeleton.
    Cherry MS; Kota S; Young A; Ferris DP
    J Appl Biomech; 2016 Jun; 32(3):269-77. PubMed ID: 26694976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systematic review on wearable lower-limb exoskeletons for gait training in neuromuscular impairments.
    Rodríguez-Fernández A; Lobo-Prat J; Font-Llagunes JM
    J Neuroeng Rehabil; 2021 Feb; 18(1):22. PubMed ID: 33526065
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A generalized framework to achieve coordinated admittance control for multi-joint lower limb robotic exoskeleton.
    Gui K; Liu H; Zhang D
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():228-233. PubMed ID: 28813823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The exoskeleton expansion: improving walking and running economy.
    Sawicki GS; Beck ON; Kang I; Young AJ
    J Neuroeng Rehabil; 2020 Feb; 17(1):25. PubMed ID: 32075669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Academic Review and Perspectives on Robotic Exoskeletons.
    Bao G; Pan L; Fang H; Wu X; Yu H; Cai S; Yu B; Wan Y
    IEEE Trans Neural Syst Rehabil Eng; 2019 Nov; 27(11):2294-2304. PubMed ID: 31567097
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.