These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 26829807)

  • 1. Machine Learning Capabilities of a Simulated Cerebellum.
    Hausknecht M; Li WK; Mauk M; Stone P
    IEEE Trans Neural Netw Learn Syst; 2017 Mar; 28(3):510-522. PubMed ID: 26829807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spiking neurons can discover predictive features by aggregate-label learning.
    Gütig R
    Science; 2016 Mar; 351(6277):aab4113. PubMed ID: 26941324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Realtime cerebellum: a large-scale spiking network model of the cerebellum that runs in realtime using a graphics processing unit.
    Yamazaki T; Igarashi J
    Neural Netw; 2013 Nov; 47():103-11. PubMed ID: 23434303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using a million cell simulation of the cerebellum: network scaling and task generality.
    Li WK; Hausknecht MJ; Stone P; Mauk MD
    Neural Netw; 2013 Nov; 47():95-102. PubMed ID: 23200194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A bi-hemispheric neuronal network model of the cerebellum with spontaneous climbing fiber firing produces asymmetrical motor learning during robot control.
    Pinzon-Morales RD; Hirata Y
    Front Neural Circuits; 2014; 8():131. PubMed ID: 25414644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computer simulation of cerebellar information processing.
    Medina JF; Mauk MD
    Nat Neurosci; 2000 Nov; 3 Suppl():1205-11. PubMed ID: 11127839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. What the cerebellum computes.
    Ohyama T; Nores WL; Murphy M; Mauk MD
    Trends Neurosci; 2003 Apr; 26(4):222-7. PubMed ID: 12689774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A theory of cerebellar cortex and adaptive motor control based on two types of universal function approximation capability.
    Fujita M
    Neural Netw; 2016 Mar; 75():173-96. PubMed ID: 26799130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Attention-gated reinforcement learning of internal representations for classification.
    Roelfsema PR; van Ooyen A
    Neural Comput; 2005 Oct; 17(10):2176-214. PubMed ID: 16105222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Multiple-Plasticity Spiking Neural Network Embedded in a Closed-Loop Control System to Model Cerebellar Pathologies.
    Geminiani A; Casellato C; Antonietti A; D'Angelo E; Pedrocchi A
    Int J Neural Syst; 2018 Jun; 28(5):1750017. PubMed ID: 28264639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational Principles of Supervised Learning in the Cerebellum.
    Raymond JL; Medina JF
    Annu Rev Neurosci; 2018 Jul; 41():233-253. PubMed ID: 29986160
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuromodulatory adaptive combination of correlation-based learning in cerebellum and reward-based learning in basal ganglia for goal-directed behavior control.
    Dasgupta S; Wörgötter F; Manoonpong P
    Front Neural Circuits; 2014; 8():126. PubMed ID: 25389391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fuzzy neuronal model of motor control inspired by cerebellar pathways to online and gradually learn inverse biomechanical functions in the presence of delay.
    Salimi-Badr A; Ebadzadeh MM; Darlot C
    Biol Cybern; 2017 Dec; 111(5-6):421-438. PubMed ID: 28993878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Digital Liquid State Machine With Biologically Inspired Learning and Its Application to Speech Recognition.
    Zhang Y; Li P; Jin Y; Choe Y
    IEEE Trans Neural Netw Learn Syst; 2015 Nov; 26(11):2635-49. PubMed ID: 25643415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cerebellar learning of accurate predictive control for fast-reaching movements.
    Spoelstra J; Schweighofer N; Arbib MA
    Biol Cybern; 2000 Apr; 82(4):321-33. PubMed ID: 10804064
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arrangement and Applying of Movement Patterns in the Cerebellum Based on Semi-supervised Learning.
    Solouki S; Pooyan M
    Cerebellum; 2016 Jun; 15(3):299-305. PubMed ID: 26109488
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cerebellar mechanisms of learning and plasticity revealed by delay eyelid conditioning.
    Mauk MD; Li W; Khilkevich A; Halverson H
    Int Rev Neurobiol; 2014; 117():21-37. PubMed ID: 25172627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic evolving spiking neural networks for on-line spatio- and spectro-temporal pattern recognition.
    Kasabov N; Dhoble K; Nuntalid N; Indiveri G
    Neural Netw; 2013 May; 41():188-201. PubMed ID: 23340243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms of cerebellar learning suggested by eyelid conditioning.
    Medina JF; Nores WL; Ohyama T; Mauk MD
    Curr Opin Neurobiol; 2000 Dec; 10(6):717-24. PubMed ID: 11240280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Biologically Plausible Architecture of the Striatum to Solve Context-Dependent Reinforcement Learning Tasks.
    Shivkumar S; Muralidharan V; Chakravarthy VS
    Front Neural Circuits; 2017; 11():45. PubMed ID: 28680395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.