These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 26829807)

  • 21. Computation of inverse functions in a model of cerebellar and reflex pathways allows to control a mobile mechanical segment.
    Ebadzadeh M; Tondu B; Darlot C
    Neuroscience; 2005; 133(1):29-49. PubMed ID: 15893629
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Building new motor responses: eyelid conditioning revisited.
    Delgado-GarcĂ­a JM; Gruart A
    Trends Neurosci; 2006 Jun; 29(6):330-8. PubMed ID: 16713636
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Extinction as new learning versus unlearning: considerations from a computer simulation of the cerebellum.
    Mauk MD; Ohyama T
    Learn Mem; 2004; 11(5):566-71. PubMed ID: 15466310
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The nature of reinforcement in cerebellar learning.
    Thompson RF; Thompson JK; Kim JJ; Krupa DJ; Shinkman PG
    Neurobiol Learn Mem; 1998; 70(1-2):150-76. PubMed ID: 9753594
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Adaptive and predictive control of a simulated robot arm.
    Tolu S; Vanegas M; Garrido JA; Luque NR; Ros E
    Int J Neural Syst; 2013 Jun; 23(3):1350010. PubMed ID: 23627657
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A model of cerebellum stabilized and scheduled hybrid long-loop control of upright balance.
    Jo S; Massaquoi SG
    Biol Cybern; 2004 Sep; 91(3):188-202. PubMed ID: 15372241
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Brain mechanisms of extinction of the classically conditioned eyeblink response.
    Robleto K; Poulos AM; Thompson RF
    Learn Mem; 2004; 11(5):517-24. PubMed ID: 15466302
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synaptic dynamics: linear model and adaptation algorithm.
    Yousefi A; Dibazar AA; Berger TW
    Neural Netw; 2014 Aug; 56():49-68. PubMed ID: 24867390
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spiking neural networks for handwritten digit recognition-Supervised learning and network optimization.
    Kulkarni SR; Rajendran B
    Neural Netw; 2018 Jul; 103():118-127. PubMed ID: 29674234
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Speech emotion recognition based on brain and mind emotional learning model.
    Motamed S; Setayeshi S; Rabiee A
    J Integr Neurosci; 2018; 17(3-4):577-591. PubMed ID: 30010138
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dynamic Redistribution of Plasticity in a Cerebellar Spiking Neural Network Reproducing an Associative Learning Task Perturbed by TMS.
    Antonietti A; Monaco J; D'Angelo E; Pedrocchi A; Casellato C
    Int J Neural Syst; 2018 Nov; 28(9):1850020. PubMed ID: 29914314
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Localization and characterization of an essential associative memory trace in the mammalian brain.
    Poulos AM; Thompson RF
    Brain Res; 2015 Sep; 1621():252-9. PubMed ID: 25449891
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A realistic bi-hemispheric model of the cerebellum uncovers the purpose of the abundant granule cells during motor control.
    Pinzon-Morales RD; Hirata Y
    Front Neural Circuits; 2015; 9():18. PubMed ID: 25983678
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Adaptive robotic control driven by a versatile spiking cerebellar network.
    Casellato C; Antonietti A; Garrido JA; Carrillo RR; Luque NR; Ros E; Pedrocchi A; D'Angelo E
    PLoS One; 2014; 9(11):e112265. PubMed ID: 25390365
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A learning theory for reward-modulated spike-timing-dependent plasticity with application to biofeedback.
    Legenstein R; Pecevski D; Maass W
    PLoS Comput Biol; 2008 Oct; 4(10):e1000180. PubMed ID: 18846203
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Combining Hebbian and reinforcement learning in a minibrain model.
    Bosman RJ; van Leeuwen WA; Wemmenhove B
    Neural Netw; 2004 Jan; 17(1):29-36. PubMed ID: 14690704
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spiking Neural Network With Distributed Plasticity Reproduces Cerebellar Learning in Eye Blink Conditioning Paradigms.
    Antonietti A; Casellato C; Garrido JA; Luque NR; Naveros F; Ros E; D' Angelo E; Pedrocchi A
    IEEE Trans Biomed Eng; 2016 Jan; 63(1):210-9. PubMed ID: 26441441
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Parallels between cerebellum- and amygdala-dependent conditioning.
    Medina JF; Repa JC; Mauk MD; LeDoux JE
    Nat Rev Neurosci; 2002 Feb; 3(2):122-31. PubMed ID: 11836520
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cerebellar function: coordination, learning or timing?
    Mauk MD; Medina JF; Nores WL; Ohyama T
    Curr Biol; 2000 Jul; 10(14):R522-5. PubMed ID: 10898992
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rapid feedforward computation by temporal encoding and learning with spiking neurons.
    Yu Q; Tang H; Tan KC; Li H
    IEEE Trans Neural Netw Learn Syst; 2013 Oct; 24(10):1539-52. PubMed ID: 24808592
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.