These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 26830109)
21. The membrane-bound intestinal enzymes of waxwings and thrushes: adaptive and functional implications of patterns of enzyme activity. Witmer MC; Martínez del Rio C Physiol Biochem Zool; 2001; 74(4):584-93. PubMed ID: 11436143 [TBL] [Abstract][Full Text] [Related]
22. Mucosal C-terminal maltase-glucoamylase hydrolyzes large size starch digestion products that may contribute to rapid postprandial glucose generation. Lee BH; Lin AH; Nichols BL; Jones K; Rose DR; Quezada-Calvillo R; Hamaker BR Mol Nutr Food Res; 2014 May; 58(5):1111-21. PubMed ID: 24442968 [TBL] [Abstract][Full Text] [Related]
23. Duodenal Infusions of Starch with Casein or Glutamic Acid Influence Pancreatic and Small Intestinal Carbohydrase Activities in Cattle. Trotta RJ; Sitorski LG; Acharya S; Brake DW; Swanson KC J Nutr; 2020 Apr; 150(4):784-791. PubMed ID: 31875476 [TBL] [Abstract][Full Text] [Related]
24. Modulation of starch digestion for slow glucose release through "toggling" of activities of mucosal α-glucosidases. Lee BH; Eskandari R; Jones K; Reddy KR; Quezada-Calvillo R; Nichols BL; Rose DR; Hamaker BR; Pinto BM J Biol Chem; 2012 Sep; 287(38):31929-38. PubMed ID: 22851177 [TBL] [Abstract][Full Text] [Related]
25. Naturally occurring sulfonium-ion glucosidase inhibitors and their derivatives: a promising class of potential antidiabetic agents. Mohan S; Eskandari R; Pinto BM Acc Chem Res; 2014 Jan; 47(1):211-25. PubMed ID: 23964564 [TBL] [Abstract][Full Text] [Related]
26. Contribution of villous atrophy to reduced intestinal maltase in infants with malnutrition. Nichols BL; Nichols VN; Putman M; Avery SE; Fraley JK; Quaroni A; Shiner M; Sterchi EE; Carrazza FR J Pediatr Gastroenterol Nutr; 2000 May; 30(5):494-502. PubMed ID: 10817278 [TBL] [Abstract][Full Text] [Related]
27. Interaction between the α-glucosidases, sucrase-isomaltase and maltase-glucoamylase, in human intestinal brush border membranes and its potential impact on disaccharide digestion. Tannous S; Stellbrinck T; Hoter A; Naim HY Front Mol Biosci; 2023; 10():1160860. PubMed ID: 36968271 [TBL] [Abstract][Full Text] [Related]
28. Purification and characterization of alpha-glucosidase complex from the intestine of the frog, Rana japonica. Takesue Y; Takesue S Biochim Biophys Acta; 1996 Sep; 1296(2):152-8. PubMed ID: 8814221 [TBL] [Abstract][Full Text] [Related]
29. Neither low salivary amylase activity, cooling cooked white rice, nor single nucleotide polymorphisms in starch-digesting enzymes reduce glycemic index or starch digestibility: a randomized, crossover trial in healthy adults. Wolever TMS; El-Sohemy A; Ezatagha A; Zurbau A; Jenkins AL Am J Clin Nutr; 2021 Nov; 114(5):1633-1645. PubMed ID: 34293081 [TBL] [Abstract][Full Text] [Related]
30. A titration approach to identify the capacity for starch digestion in milk-fed calves. Gilbert MS; van den Borne JJ; Berends H; Pantophlet AJ; Schols HA; Gerrits WJ Animal; 2015 Feb; 9(2):249-57. PubMed ID: 25205419 [TBL] [Abstract][Full Text] [Related]
31. Effects of extrusion and supplementation of exogenous enzymes to diets containing Chinese storage brown rice on the carbohydrase activity in the digestive tract of piglets. He J; Liu C; Fu C; Li J J Anim Physiol Anim Nutr (Berl); 2010 Apr; 94(2):146-53. PubMed ID: 20465715 [TBL] [Abstract][Full Text] [Related]
32. Dietary phenolic compounds selectively inhibit the individual subunits of maltase-glucoamylase and sucrase-isomaltase with the potential of modulating glucose release. Simsek M; Quezada-Calvillo R; Ferruzzi MG; Nichols BL; Hamaker BR J Agric Food Chem; 2015 Apr; 63(15):3873-9. PubMed ID: 25816913 [TBL] [Abstract][Full Text] [Related]
33. Mapping the intestinal alpha-glucogenic enzyme specificities of starch digesting maltase-glucoamylase and sucrase-isomaltase. Jones K; Sim L; Mohan S; Kumarasamy J; Liu H; Avery S; Naim HY; Quezada-Calvillo R; Nichols BL; Pinto BM; Rose DR Bioorg Med Chem; 2011 Jul; 19(13):3929-34. PubMed ID: 21669536 [TBL] [Abstract][Full Text] [Related]
35. Effects of a commercial starch blocker preparation on carbohydrate digestion and absorption: in vivo and in vitro studies. Hollenbeck CB; Coulston AM; Quan R; Becker TR; Vreman HJ; Stevenson DK; Reaven GM Am J Clin Nutr; 1983 Oct; 38(4):498-503. PubMed ID: 6414283 [TBL] [Abstract][Full Text] [Related]
36. Disaccharidase activities in dyspeptic children: biochemical and molecular investigations of maltase-glucoamylase activity. Karnsakul W; Luginbuehl U; Hahn D; Sterchi E; Avery S; Sen P; Swallow D; Nichols B J Pediatr Gastroenterol Nutr; 2002 Oct; 35(4):551-6. PubMed ID: 12394383 [TBL] [Abstract][Full Text] [Related]
37. The regulation of jejunal induction of the maltase-glucoamylase gene by a high-starch/low-fat diet in mice. Mochizuki K; Honma K; Shimada M; Goda T Mol Nutr Food Res; 2010 Oct; 54(10):1445-51. PubMed ID: 20425755 [TBL] [Abstract][Full Text] [Related]
38. Evidence of native starch degradation with human small intestinal maltase-glucoamylase (recombinant). Ao Z; Quezada-Calvillo R; Sim L; Nichols BL; Rose DR; Sterchi EE; Hamaker BR FEBS Lett; 2007 May; 581(13):2381-8. PubMed ID: 17485087 [TBL] [Abstract][Full Text] [Related]
39. Glucoamylase activity in infants and children: normal values and relationship to symptoms and histological findings. Lee PC; Werlin S; Trost B; Struve M J Pediatr Gastroenterol Nutr; 2004 Aug; 39(2):161-5. PubMed ID: 15269621 [TBL] [Abstract][Full Text] [Related]