These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 26830171)
1. Phenanthrene exposure induces cardiac hypertrophy via reducing miR-133a expression by DNA methylation. Huang L; Xi Z; Wang C; Zhang Y; Yang Z; Zhang S; Chen Y; Zuo Z Sci Rep; 2016 Feb; 6():20105. PubMed ID: 26830171 [TBL] [Abstract][Full Text] [Related]
2. Adiponectin Upregulates MiR-133a in Cardiac Hypertrophy through AMPK Activation and Reduced ERK1/2 Phosphorylation. Li Y; Cai X; Guan Y; Wang L; Wang S; Li Y; Fu Y; Gao X; Su G PLoS One; 2016; 11(2):e0148482. PubMed ID: 26845040 [TBL] [Abstract][Full Text] [Related]
3. [MicroRNA-133a attenuates isoproterenol-induced neonatal rat cardiomyocyte hypertrophy by downregulating L-type calcium channel α1C subunit gene expression]. Wu Y; Wang YQ; Wang BX Zhonghua Xin Xue Guan Bing Za Zhi; 2013 Jun; 41(6):507-13. PubMed ID: 24113045 [TBL] [Abstract][Full Text] [Related]
5. MicroRNA-133a protects against myocardial fibrosis and modulates electrical repolarization without affecting hypertrophy in pressure-overloaded adult hearts. Matkovich SJ; Wang W; Tu Y; Eschenbacher WH; Dorn LE; Condorelli G; Diwan A; Nerbonne JM; Dorn GW Circ Res; 2010 Jan; 106(1):166-75. PubMed ID: 19893015 [TBL] [Abstract][Full Text] [Related]
6. miR-133a-3p attenuates cardiomyocyte hypertrophy through inhibiting pyroptosis activation by targeting IKKε. Zhu YF; Wang R; Chen W; Cao YD; Li LP; Chen X Acta Histochem; 2021 Jan; 123(1):151653. PubMed ID: 33246224 [TBL] [Abstract][Full Text] [Related]
7. Reciprocal regulation of miR-23a and lysophosphatidic acid receptor signaling in cardiomyocyte hypertrophy. Yang J; Nie Y; Wang F; Hou J; Cong X; Hu S; Chen X Biochim Biophys Acta; 2013 Aug; 1831(8):1386-94. PubMed ID: 23711961 [TBL] [Abstract][Full Text] [Related]
9. MicroRNA-451 exacerbates lipotoxicity in cardiac myocytes and high-fat diet-induced cardiac hypertrophy in mice through suppression of the LKB1/AMPK pathway. Kuwabara Y; Horie T; Baba O; Watanabe S; Nishiga M; Usami S; Izuhara M; Nakao T; Nishino T; Otsu K; Kita T; Kimura T; Ono K Circ Res; 2015 Jan; 116(2):279-88. PubMed ID: 25362209 [TBL] [Abstract][Full Text] [Related]
10. Overexpression of microRNA-133a inhibits ischemia-reperfusion-induced cardiomyocyte apoptosis by targeting DAPK2. Li S; Xiao FY; Shan PR; Su L; Chen DL; Ding JY; Wang ZQ J Hum Genet; 2015 Nov; 60(11):709-16. PubMed ID: 26334104 [TBL] [Abstract][Full Text] [Related]
11. Neuropeptide Y Induces Cardiomyocyte Hypertrophy Xie Y; Hu J; Zhang X; Li C; Zuo Y; Xie S; Zhang Z; Zhu S Protein Pept Lett; 2020; 27(9):878-887. PubMed ID: 32297569 [TBL] [Abstract][Full Text] [Related]
12. miR-30c Mediates Upregulation of Cdc42 and Pak1 in Diabetic Cardiomyopathy. Raut SK; Kumar A; Singh GB; Nahar U; Sharma V; Mittal A; Sharma R; Khullar M Cardiovasc Ther; 2015 Jun; 33(3):89-97. PubMed ID: 25781190 [TBL] [Abstract][Full Text] [Related]
13. Molecular mechanisms regarding potassium bromate‑induced cardiac hypertrophy without apoptosis in H9c2 cells. Kuo SC; Li Y; Cheng YZ; Lee WJ; Cheng JT; Cheng KC Mol Med Rep; 2018 Nov; 18(5):4700-4708. PubMed ID: 30221729 [TBL] [Abstract][Full Text] [Related]
15. The H19 long noncoding RNA is a novel negative regulator of cardiomyocyte hypertrophy. Liu L; An X; Li Z; Song Y; Li L; Zuo S; Liu N; Yang G; Wang H; Cheng X; Zhang Y; Yang X; Wang J Cardiovasc Res; 2016 Jul; 111(1):56-65. PubMed ID: 27084844 [TBL] [Abstract][Full Text] [Related]
16. LncRNA Tincr regulates PKCɛ expression in a miR-31-5p-dependent manner in cardiomyocyte hypertrophy. Li H; Shi H; Zhang F; Xue H; Wang L; Tian J; Xu J; Han Q Naunyn Schmiedebergs Arch Pharmacol; 2020 Dec; 393(12):2495-2506. PubMed ID: 32157348 [TBL] [Abstract][Full Text] [Related]