BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

356 related articles for article (PubMed ID: 26830375)

  • 1. Nanoscale zerovalent iron (nZVI) at environmentally relevant concentrations induced multigenerational reproductive toxicity in Caenorhabditis elegans.
    Yang YF; Chen PJ; Liao VH
    Chemosphere; 2016 May; 150():615-623. PubMed ID: 26830375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential alteration in reproductive toxicity of medaka fish on exposure to nanoscale zerovalent iron and its oxidation products.
    Yang CH; Kung TA; Chen PJ
    Environ Pollut; 2019 Sep; 252(Pt B):1920-1932. PubMed ID: 31227347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The zerovalent iron nanoparticle causes higher developmental toxicity than its oxidation products in early life stages of medaka fish.
    Chen PJ; Wu WL; Wu KC
    Water Res; 2013 Aug; 47(12):3899-909. PubMed ID: 23548565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stabilization or oxidation of nanoscale zerovalent iron at environmentally relevant exposure changes bioavailability and toxicity in medaka fish.
    Chen PJ; Tan SW; Wu WL
    Environ Sci Technol; 2012 Aug; 46(15):8431-9. PubMed ID: 22747062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrating classical and molecular approaches to evaluate the impact of nanosized zero-valent iron (nZVI) on soil organisms.
    Saccà ML; Fajardo C; Costa G; Lobo C; Nande M; Martin M
    Chemosphere; 2014 Jun; 104():184-9. PubMed ID: 24287264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ remediation of hexavalent chromium contaminated soil by CMC-stabilized nanoscale zero-valent iron composited with biochar.
    Zhang R; Zhang N; Fang Z
    Water Sci Technol; 2018 Mar; 77(5-6):1622-1631. PubMed ID: 29595164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prolonged exposure of di(2-ethylhexyl) phthalate induces multigenerational toxic effects in Caenorhabditis elegans.
    Li SW; How CM; Liao VH
    Sci Total Environ; 2018 Sep; 634():260-266. PubMed ID: 29627549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immobilization and phytotoxicity of chromium in contaminated soil remediated by CMC-stabilized nZVI.
    Wang Y; Fang Z; Kang Y; Tsang EP
    J Hazard Mater; 2014 Jun; 275():230-7. PubMed ID: 24880637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toxicity assessments of nanoscale zerovalent iron and its oxidation products in medaka (Oryzias latipes) fish.
    Chen PJ; Su CH; Tseng CY; Tan SW; Cheng CH
    Mar Pollut Bull; 2011; 63(5-12):339-46. PubMed ID: 21440267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport of carboxymethyl cellulose-coated zerovalent iron nanoparticles in a sand tank: Effects of sand grain size, nanoparticle concentration and injection velocity.
    Li J; Rajajayavel SRC; Ghoshal S
    Chemosphere; 2016 May; 150():8-16. PubMed ID: 26891351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of surface modification on the toxicity of zerovalent iron nanoparticles in aquatic and terrestrial organisms.
    Yoon H; Pangging M; Jang MH; Hwang YS; Chang YS
    Ecotoxicol Environ Saf; 2018 Nov; 163():436-443. PubMed ID: 30075446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carboxymethyl cellulose coating decreases toxicity and oxidizing capacity of nanoscale zerovalent iron.
    Zhou L; Thanh TL; Gong J; Kim JH; Kim EJ; Chang YS
    Chemosphere; 2014 Jun; 104():155-61. PubMed ID: 24287261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The dual effects of carboxymethyl cellulose on the colloidal stability and toxicity of nanoscale zero-valent iron.
    Dong H; Xie Y; Zeng G; Tang L; Liang J; He Q; Zhao F; Zeng Y; Wu Y
    Chemosphere; 2016 Feb; 144():1682-9. PubMed ID: 26519799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The biochemical and toxicological responses of earthworm (Eisenia fetida) following exposure to nanoscale zerovalent iron in a soil system.
    Liang J; Xia X; Zhang W; Zaman WQ; Lin K; Hu S; Lin Z
    Environ Sci Pollut Res Int; 2017 Jan; 24(3):2507-2514. PubMed ID: 27822688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ecotoxicological effects on earthworms of fresh and aged nano-sized zero-valent iron (nZVI) in soil.
    El-Temsah YS; Joner EJ
    Chemosphere; 2012 Sep; 89(1):76-82. PubMed ID: 22595530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toxicity-based toxicokinetic/toxicodynamic assessment of bioaccumulation and nanotoxicity of zerovalent iron nanoparticles in
    Yang YF; Lin YJ; Liao CM
    Int J Nanomedicine; 2017; 12():4607-4621. PubMed ID: 28721038
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A review of the environmental implications of in situ remediation by nanoscale zero valent iron (nZVI): Behavior, transport and impacts on microbial communities.
    Lefevre E; Bossa N; Wiesner MR; Gunsch CK
    Sci Total Environ; 2016 Sep; 565():889-901. PubMed ID: 26897610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of zero valent iron nanoparticles to Eisenia fetida in three soil types.
    Yirsaw BD; Mayilswami S; Megharaj M; Chen Z; Naidu R
    Environ Sci Pollut Res Int; 2016 May; 23(10):9822-31. PubMed ID: 26856861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ remediation-released zero-valent iron nanoparticles impair soil ecosystems health: A C. elegans biomarker-based risk assessment.
    Yang YF; Cheng YH; Liao CM
    J Hazard Mater; 2016 Nov; 317():210-220. PubMed ID: 27281168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ecotoxicogenomic analysis of stress induced on Caenorhabditis elegans in heavy metal contaminated soil after nZVI treatment.
    Fajardo C; Martín M; Nande M; Botías P; García-Cantalejo J; Mengs G; Costa G
    Chemosphere; 2020 Sep; 254():126909. PubMed ID: 32957299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.