These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 26830454)

  • 41. Numerical Simulations of the Motion and Deformation of Three RBCs during Poiseuille Flow through a Constricted Vessel Using IB-LBM.
    Wang R; Wei Y; Wu C; Sun L; Zheng W
    Comput Math Methods Med; 2018; 2018():9425375. PubMed ID: 29681999
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Rheology of the microcirculation.
    Pries AR; Secomb TW
    Clin Hemorheol Microcirc; 2003; 29(3-4):143-8. PubMed ID: 14724335
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cell-free layer and wall shear stress variation in microvessels.
    Yin X; Zhang J
    Biorheology; 2012; 49(4):261-70. PubMed ID: 22836080
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dynamical clustering of red blood cells in capillary vessels.
    Boryczko K; Dzwinel W; Yuen DA
    J Mol Model; 2003 Feb; 9(1):16-33. PubMed ID: 12638008
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Flow of Red Blood Cells in Stenosed Microvessels.
    Vahidkhah K; Balogh P; Bagchi P
    Sci Rep; 2016 Jun; 6():28194. PubMed ID: 27319318
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Deformation of erythrocytes in microvessels and glass capillaries: effects of erythrocyte deformability.
    Suzuki Y; Tateishi N; Soutani M; Maeda N
    Microcirculation; 1996 Mar; 3(1):49-57. PubMed ID: 8846271
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mechanical behavior of the erythrocyte in microvessel stenosis.
    Zhang Z; Zhang X
    Sci China Life Sci; 2011 May; 54(5):450-8. PubMed ID: 21416230
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Development of a general method for designing microvascular networks using distribution of wall shear stress.
    Sayed Razavi M; Shirani E
    J Biomech; 2013 Sep; 46(13):2303-9. PubMed ID: 23891174
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Numerical investigation of blood flow and red blood cell rheology: the magnetic field effect.
    Javadi Eshkalak N; Aminfar H; Mohammadpourfard M; Taheri MH; Ahookhosh K
    Electromagn Biol Med; 2022 Apr; 41(2):129-141. PubMed ID: 35067145
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of fractional blood flow on plasma skimming in the microvasculature.
    Yang J; Yoo SS; Lee TR
    Phys Rev E; 2017 Apr; 95(4-1):040401. PubMed ID: 28505807
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Association between the hemodynamic and rheological parameters in the micro blood vessels in vivo].
    Mamisashvili VA; Mchedlishvili NT; Chachanidze ET; Urotadze KN
    Georgian Med News; 2005 Feb; (119):68-70. PubMed ID: 15834187
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mechanics and computational simulation of blood flow in microvessels.
    Secomb TW
    Med Eng Phys; 2011 Sep; 33(7):800-4. PubMed ID: 21036096
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Three-dimensional distribution of wall shear stress and its gradient in red cell-resolved computational modeling of blood flow in in vivo-like microvascular networks.
    Balogh P; Bagchi P
    Physiol Rep; 2019 May; 7(9):e14067. PubMed ID: 31062494
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The effect of the endothelial-cell glycocalyx on the motion of red blood cells through capillaries.
    Damiano ER
    Microvasc Res; 1998 Jan; 55(1):77-91. PubMed ID: 9473411
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mesoscale simulation of blood flow in small vessels.
    Bagchi P
    Biophys J; 2007 Mar; 92(6):1858-77. PubMed ID: 17208982
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Simulation of a tumor cell flowing through a symmetric bifurcated microvessel.
    Xiao L; Chu J; Lin C; Zhang K; Chen S; Yang L
    Biomech Model Mechanobiol; 2023 Feb; 22(1):297-308. PubMed ID: 36287312
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Flow structures and red blood cell dynamics in arteriole of dilated or constricted cross section.
    Gambaruto AM
    J Biomech; 2016 Jul; 49(11):2229-2240. PubMed ID: 26822224
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Red blood cell motion and deformation in a curved microvessel.
    Ye T; Phan-Thien N; Lim CT; Li Y
    J Biomech; 2017 Dec; 65():12-22. PubMed ID: 29102268
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Capillary penetration failure of blood suspensions.
    Zhou R; Chang HC
    J Colloid Interface Sci; 2005 Jul; 287(2):647-56. PubMed ID: 15925633
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Red blood cell aggregation and dissociation in shear flows simulated by lattice Boltzmann method.
    Zhang J; Johnson PC; Popel AS
    J Biomech; 2008; 41(1):47-55. PubMed ID: 17888442
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.