These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 26830457)

  • 1. Universal conformational properties of polymers in ionic nanogels.
    Kobayashi H; Winkler RG
    Sci Rep; 2016 Feb; 6():19836. PubMed ID: 26830457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Competition between excluded-volume and electrostatic interactions for nanogel swelling: effects of the counterion valence and nanogel charge.
    Adroher-Benítez I; Martín-Molina A; Ahualli S; Quesada-Pérez M; Odriozola G; Moncho-Jordá A
    Phys Chem Chem Phys; 2017 Mar; 19(9):6838-6848. PubMed ID: 28218325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular simulation of the swelling of polyelectrolyte gels by monovalent and divalent counterions.
    Yin DW; Horkay F; Douglas JF; de Pablo JJ
    J Chem Phys; 2008 Oct; 129(15):154902. PubMed ID: 19045224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics simulation of discontinuous volume phase transitions in highly-charged crosslinked polyelectrolyte networks with explicit counterions in good solvent.
    Yin DW; Yan Q; de Pablo JJ
    J Chem Phys; 2005 Nov; 123(17):174909. PubMed ID: 16375571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Counterion-induced swelling of ionic microgels.
    Denton AR; Tang Q
    J Chem Phys; 2016 Oct; 145(16):164901. PubMed ID: 27802663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature-sensitive nanogels in the presence of salt: explicit coarse-grained simulations.
    Quesada-Pérez M; Ahualli S; Martín-Molina A
    J Chem Phys; 2014 Sep; 141(12):124903. PubMed ID: 25273470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of counterion size and backbone rigidity on the dynamics of ionic polymer melts and glasses.
    Fu Y; Bocharova V; Ma M; Sokolov AP; Sumpter BG; Kumar R
    Phys Chem Chem Phys; 2017 Oct; 19(40):27442-27451. PubMed ID: 28975173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ionic effects in collapse of polyelectrolyte brushes.
    Jiang T; Wu J
    J Phys Chem B; 2008 Jul; 112(26):7713-20. PubMed ID: 18543988
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Osmotic pressure and swelling behavior of ionic microcapsules.
    Alziyadi MO; Denton AR
    J Chem Phys; 2021 Dec; 155(21):214904. PubMed ID: 34879668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of counterion excluded volume on the conformational behavior of polyelectrolyte chains.
    Gordievskaya YD; Gavrilov AA; Kramarenko EY
    Soft Matter; 2018 Feb; 14(8):1474-1481. PubMed ID: 29399691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of network topology on the swelling of polyelectrolyte nanogels.
    Rizzi LG; Levin Y
    J Chem Phys; 2016 Mar; 144(11):114903. PubMed ID: 27004897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Breakdown of inverse morphologies in charged diblock copolymers.
    Goswami M; Kumar R; Sumpter BG; Mays J
    J Phys Chem B; 2011 Apr; 115(13):3330-8. PubMed ID: 21405029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of the parameters controlling swelling of chemically cross-linked pH-sensitive poly(N-vinylimidazole) hydrogels.
    Molina MJ; Gómez-Antón MR; Piérola IF
    J Phys Chem B; 2007 Oct; 111(42):12066-74. PubMed ID: 17915914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monte Carlo simulations of weak polyelectrolyte microgels: pH-dependence of conformation and ionization.
    Hofzumahaus C; Hebbeker P; Schneider S
    Soft Matter; 2018 May; 14(20):4087-4100. PubMed ID: 29569677
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-organization of multivalent counterions in polyelectrolyte brushes.
    Jiang T; Wu J
    J Chem Phys; 2008 Aug; 129(8):084903. PubMed ID: 19044849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The stimuli-responsive multiphase behavior of core-shell nanogels with opposite charges and their potential application in in situ gelling system.
    Yu T; Geng S; Li H; Wan J; Peng X; Liu W; Zhao Y; Yang X; Xu H
    Colloids Surf B Biointerfaces; 2015 Dec; 136():99-104. PubMed ID: 26364090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Born energy, acid-base equilibrium, structure and interactions of end-grafted weak polyelectrolyte layers.
    Nap RJ; Tagliazucchi M; Szleifer I
    J Chem Phys; 2014 Jan; 140(2):024910. PubMed ID: 24437914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computer Simulations of Static and Dynamical Properties of Weak Polyelectrolyte Nanogels in Salty Solutions.
    Sean D; Landsgesell J; Holm C
    Gels; 2017 Dec; 4(1):. PubMed ID: 30674778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polyelectrolyte gel transitions: experimental aspects of charge inhomogeneity in the swelling and segmental attractions in the shrinking.
    Kokufuta E
    Langmuir; 2005 Oct; 21(22):10004-15. PubMed ID: 16229520
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Swelling of cross-linked polyelectrolyte gels.
    Schneider S; Linse P
    Eur Phys J E Soft Matter; 2002 Aug; 8(5):457-60. PubMed ID: 15015117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.