These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 26830484)

  • 1. High Expression Levels of NADPH Oxidase 3 in the Cerebrum of Ten-Week-Old Stroke-Prone Spontaneously Hypertensive Rats.
    Michihara A; Oda A; Mido M
    Biol Pharm Bull; 2016; 39(2):252-8. PubMed ID: 26830484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Excess salt causes cerebral neuronal apoptosis and inflammation in stroke-prone hypertensive rats through angiotensin II-induced NADPH oxidase activation.
    Yamamoto E; Tamamaki N; Nakamura T; Kataoka K; Tokutomi Y; Dong YF; Fukuda M; Matsuba S; Ogawa H; Kim-Mitsuyama S
    Stroke; 2008 Nov; 39(11):3049-56. PubMed ID: 18688015
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased expression of gp91phox homologues of NAD(P)H oxidase in the aortic media during chronic hypertension: involvement of the renin-angiotensin system.
    Akasaki T; Ohya Y; Kuroda J; Eto K; Abe I; Sumimoto H; Iida M
    Hypertens Res; 2006 Oct; 29(10):813-20. PubMed ID: 17283869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression of glucose transporter-1 and aquaporin-4 in the cerebral cortex of stroke-prone spontaneously hypertensive rats in relation to the blood-brain barrier function.
    Ishida H; Takemori K; Dote K; Ito H
    Am J Hypertens; 2006 Jan; 19(1):33-9. PubMed ID: 16461188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased reactive oxygen species in rostral ventrolateral medulla contribute to neural mechanisms of hypertension in stroke-prone spontaneously hypertensive rats.
    Kishi T; Hirooka Y; Kimura Y; Ito K; Shimokawa H; Takeshita A
    Circulation; 2004 May; 109(19):2357-62. PubMed ID: 15117836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Olmesartan reduces oxidative stress in the brain of stroke-prone spontaneously hypertensive rats assessed by an in vivo ESR method.
    Araki S; Hirooka Y; Kishi T; Yasukawa K; Utsumi H; Sunagawa K
    Hypertens Res; 2009 Dec; 32(12):1091-6. PubMed ID: 19763130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phytoestrogens attenuate oxidative DNA damage in vascular smooth muscle cells from stroke-prone spontaneously hypertensive rats.
    Mizutani K; Ikeda K; Nishikata T; Yamori Y
    J Hypertens; 2000 Dec; 18(12):1833-40. PubMed ID: 11132608
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fosinopril and losartan regulate klotho gene and nicotinamide adenine dinucleotide phosphate oxidase expression in kidneys of spontaneously hypertensive rats.
    Tang R; Zhou QL; Ao X; Peng WS; Veeraragoo P; Tang TF
    Kidney Blood Press Res; 2011; 34(5):350-7. PubMed ID: 21646815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cardiopulmonary responses of Wistar Kyoto, spontaneously hypertensive, and stroke-prone spontaneously hypertensive rats to particulate matter (PM) exposure.
    Wallenborn JG; Schladweiler MC; Nyska A; Johnson JA; Thomas R; Jaskot RH; Richards JH; Ledbetter AD; Kodavanti UP
    J Toxicol Environ Health A; 2007 Nov; 70(22):1912-22. PubMed ID: 17966062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuronal vulnerability of stroke-prone spontaneously hypertensive rats to ischemia and its prevention with antioxidants such as vitamin E.
    Yamagata K; Tagami M; Yamori Y
    Neuroscience; 2010 Sep; 170(1):1-7. PubMed ID: 20633610
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Azelnidipine decreases sympathetic nerve activity via antioxidant effect in the rostral ventrolateral medulla of stroke-prone spontaneously hypertensive rats.
    Konno S; Hirooka Y; Araki S; Koga Y; Kishi T; Sunagawa K
    J Cardiovasc Pharmacol; 2008 Dec; 52(6):555-60. PubMed ID: 19057394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microvascular display of xanthine oxidase and NADPH oxidase in the spontaneously hypertensive rat.
    DeLano FA; Parks DA; Ruedi JM; Babior BM; Schmid-Schönbein GW
    Microcirculation; 2006; 13(7):551-66. PubMed ID: 16990214
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of constitutive gene expression levels of hepatic cholesterol biosynthetic enzymes between Wistar-Kyoto and stroke-prone spontaneously hypertensive rats.
    Nemoto K; Ikeda A; Ito S; Miyata M; Yoshida C; Degawa M
    Biol Pharm Bull; 2013; 36(7):1216-20. PubMed ID: 23585482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Possible involvement of oxidative stress as a causative factor in blood-brain barrier dysfunction in stroke-prone spontaneously hypertensive rats.
    Takemori K; Murakami T; Kometani T; Ito H
    Microvasc Res; 2013 Nov; 90():169-72. PubMed ID: 23978333
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protective effect of antioxidant ebselen (PZ51) on the cerebral cortex of stroke-prone spontaneously hypertensive rats.
    Sui H; Wang W; Wang PH; Liu LS
    Hypertens Res; 2005 Mar; 28(3):249-54. PubMed ID: 16097369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amlodipine-induced reduction of oxidative stress in the brain is associated with sympatho-inhibitory effects in stroke-prone spontaneously hypertensive rats.
    Hirooka Y; Kimura Y; Nozoe M; Sagara Y; Ito K; Sunagawa K
    Hypertens Res; 2006 Jan; 29(1):49-56. PubMed ID: 16715653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Angiotensin II type 1 receptor antagonist and angiotensin-converting enzyme inhibitor altered the activation of Cu/Zn-containing superoxide dismutase in the heart of stroke-prone spontaneously hypertensive rats.
    Tanaka M; Umemoto S; Kawahara S; Kubo M; Itoh S; Umeji K; Matsuzaki M
    Hypertens Res; 2005 Jan; 28(1):67-77. PubMed ID: 15969257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glutamate reduces secretion of l-serine in astrocytes isolated from stroke-prone spontaneously hypertensive rats.
    Yamagata K; Shoji Y; Terashima T; Yokogoshi H
    Neuroscience; 2006 Dec; 143(3):729-37. PubMed ID: 17027164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High levels of oxidative stress exist in the brain than serum or kidneys in stroke-prone spontaneously hypertensive rats at ten weeks of age.
    Michihara A; Shimatani M; Anraku M; Tomida H; Akasaki K
    Biol Pharm Bull; 2010; 33(3):518-21. PubMed ID: 20190419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased NADPH-oxidase activity and Nox4 expression during chronic hypertension is associated with enhanced cerebral vasodilatation to NADPH in vivo.
    Paravicini TM; Chrissobolis S; Drummond GR; Sobey CG
    Stroke; 2004 Feb; 35(2):584-9. PubMed ID: 14739416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.