BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 26830599)

  • 1. Improving quantitative structure-activity relationship models using Artificial Neural Networks trained with dropout.
    Mendenhall J; Meiler J
    J Comput Aided Mol Des; 2016 Feb; 30(2):177-89. PubMed ID: 26830599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BCL::Mol2D-a robust atom environment descriptor for QSAR modeling and lead optimization.
    Vu O; Mendenhall J; Altarawy D; Meiler J
    J Comput Aided Mol Des; 2019 May; 33(5):477-486. PubMed ID: 30955193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Autocorrelation descriptor improvements for QSAR: 2DA_Sign and 3DA_Sign.
    Sliwoski G; Mendenhall J; Meiler J
    J Comput Aided Mol Des; 2016 Mar; 30(3):209-17. PubMed ID: 26721261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Artificial Neural Networks in Computer-Aided Drug Design: An Overview of Recent Advances.
    Cheirdaris DG
    Adv Exp Med Biol; 2020; 1194():115-125. PubMed ID: 32468528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Benchmarking ligand-based virtual High-Throughput Screening with the PubChem database.
    Butkiewicz M; Lowe EW; Mueller R; Mendenhall JL; Teixeira PL; Weaver CD; Meiler J
    Molecules; 2013 Jan; 18(1):735-56. PubMed ID: 23299552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Have artificial neural networks met expectations in drug discovery as implemented in QSAR framework?
    Dobchev D; Karelson M
    Expert Opin Drug Discov; 2016 Jul; 11(7):627-39. PubMed ID: 27149299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural networks in building QSAR models.
    Baskin II; Palyulin VA; Zefirov NS
    Methods Mol Biol; 2008; 458():137-58. PubMed ID: 19065809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hyperbolic relational graph convolution networks plus: a simple but highly efficient QSAR-modeling method.
    Wu Z; Jiang D; Hsieh CY; Chen G; Liao B; Cao D; Hou T
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33866354
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A self-adaptive genetic algorithm-artificial neural network algorithm with leave-one-out cross validation for descriptor selection in QSAR study.
    Wu J; Mei J; Wen S; Liao S; Chen J; Shen Y
    J Comput Chem; 2010 Jul; 31(10):1956-68. PubMed ID: 20512843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Merging Counter-Propagation and Back-Propagation Algorithms: Overcoming the Limitations of Counter-Propagation Neural Network Models.
    Drgan V; Venko K; Sluga J; Novič M
    Int J Mol Sci; 2024 Apr; 25(8):. PubMed ID: 38673742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular fingerprint-based artificial neural networks QSAR for ligand biological activity predictions.
    Myint KZ; Wang L; Tong Q; Xie XQ
    Mol Pharm; 2012 Oct; 9(10):2912-23. PubMed ID: 22937990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. QSAR modeling of mono- and bis-quaternary ammonium salts that act as antagonists at neuronal nicotinic acetylcholine receptors mediating dopamine release.
    Zheng F; Bayram E; Sumithran SP; Ayers JT; Zhan CG; Schmitt JD; Dwoskin LP; Crooks PA
    Bioorg Med Chem; 2006 May; 14(9):3017-37. PubMed ID: 16431111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative Structure Activity/Toxicity Relationship through Neural Networks for Drug Discovery or Regulatory Use.
    Novič M
    Curr Top Med Chem; 2023; 23(29):2792-2804. PubMed ID: 37867278
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective descriptor pruning for QSAR/QSPR studies using artificial neural networks.
    Turner JV; Cutler DJ; Spence I; Maddalena DJ
    J Comput Chem; 2003 May; 24(7):891-7. PubMed ID: 12692798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRNNTL: Convolutional Recurrent Neural Network and Transfer Learning for QSAR Modeling in Organic Drug and Material Discovery.
    Li Y; Xu Y; Yu Y
    Molecules; 2021 Nov; 26(23):. PubMed ID: 34885843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep learning and virtual drug screening.
    Carpenter KA; Cohen DS; Jarrell JT; Huang X
    Future Med Chem; 2018 Nov; 10(21):2557-2567. PubMed ID: 30288997
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ligand biological activity predictions using fingerprint-based artificial neural networks (FANN-QSAR).
    Myint KZ; Xie XQ
    Methods Mol Biol; 2015; 1260():149-64. PubMed ID: 25502380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Inverse QSAR Method Based on Linear Regression and Integer Programming.
    Zhu J; Azam NA; Haraguchi K; Zhao L; Nagamochi H; Akutsu T
    Front Biosci (Landmark Ed); 2022 Jun; 27(6):188. PubMed ID: 35748264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In silico toxicity evaluation of dioxins using structure-activity relationship (SAR) and two-dimensional quantitative structure-activity relationship (2D-QSAR).
    Yang H; Du Z; Lv WJ; Zhang XY; Zhai HL
    Arch Toxicol; 2019 Nov; 93(11):3207-3218. PubMed ID: 31552475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ADis-QSAR: a machine learning model based on biological activity differences of compounds.
    Park GJ; Kang NS
    J Comput Aided Mol Des; 2023 Sep; 37(9):435-451. PubMed ID: 37382799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.