BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 26831041)

  • 1. A Self-Folding Hydrogel In Vitro Model for Ductal Carcinoma.
    Kwag HR; Serbo JV; Korangath P; Sukumar S; Romer LH; Gracias DH
    Tissue Eng Part C Methods; 2016 Apr; 22(4):398-407. PubMed ID: 26831041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering biologically extensible hydrogels using photolithographic printing.
    Mehta SM; Jin T; Stanciulescu I; Grande-Allen KJ
    Acta Biomater; 2018 Jul; 75():52-62. PubMed ID: 29803005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assembly of RGD-Modified Hydrogel Micromodules into Permeable Three-Dimensional Hollow Microtissues Mimicking in Vivo Tissue Structures.
    Wang H; Cui J; Zheng Z; Shi Q; Sun T; Liu X; Huang Q; Fukuda T
    ACS Appl Mater Interfaces; 2017 Dec; 9(48):41669-41679. PubMed ID: 29130303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of stiffness-tunable and cell-responsive Gelatin-poly(ethylene glycol) hydrogel for three-dimensional cell encapsulation.
    Cao Y; Lee BH; Peled HB; Venkatraman SS
    J Biomed Mater Res A; 2016 Oct; 104(10):2401-11. PubMed ID: 27170015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bio-origami hydrogel scaffolds composed of photocrosslinked PEG bilayers.
    Jamal M; Kadam SS; Xiao R; Jivan F; Onn TM; Fernandes R; Nguyen TD; Gracias DH
    Adv Healthc Mater; 2013 Aug; 2(8):1142-50. PubMed ID: 23386382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photopolymerized injectable RGD-modified fumarated poly(ethylene glycol) diglycidyl ether hydrogels for cell growth.
    Akdemir ZS; Akçakaya H; Kahraman MV; Ceyhan T; Kayaman-Apohan N; Güngör A
    Macromol Biosci; 2008 Sep; 8(9):852-62. PubMed ID: 18504803
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Anti-Tumor Effects of M1 Macrophage-Loaded Poly (ethylene glycol) and Gelatin-Based Hydrogels on Hepatocellular Carcinoma.
    Guerra AD; Yeung OWH; Qi X; Kao WJ; Man K
    Theranostics; 2017; 7(15):3732-3744. PubMed ID: 29109772
    [No Abstract]   [Full Text] [Related]  

  • 8. Numerical investigation of the influence of pattern topology on the mechanical behavior of PEGDA hydrogels.
    Jin T; Stanciulescu I
    Acta Biomater; 2017 Feb; 49():247-259. PubMed ID: 27856282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and evaluation of novel biodegradable hydrogels based on poly(ethylene glycol) and sebacic acid as tissue engineering scaffolds.
    Kim J; Lee KW; Hefferan TE; Currier BL; Yaszemski MJ; Lu L
    Biomacromolecules; 2008 Jan; 9(1):149-57. PubMed ID: 18072747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a biostable replacement for PEGDA hydrogels.
    Browning MB; Cosgriff-Hernandez E
    Biomacromolecules; 2012 Mar; 13(3):779-86. PubMed ID: 22324325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of polymer molecular weight and cell seeding density on viability of cells entrapped within PEGDA hydrogel microspheres.
    Perera D; Medini M; Seethamraju D; Falkowski R; White K; Olabisi RM
    J Microencapsul; 2018 Aug; 35(5):475-481. PubMed ID: 30280941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of positively charged poly(ethylene glycol)-diacrylate hydrogel as a bone tissue engineering scaffold.
    Tan F; Xu X; Deng T; Yin M; Zhang X; Wang J
    Biomed Mater; 2012 Oct; 7(5):055009. PubMed ID: 22945346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile modulation of cell adhesion to a poly(ethylene glycol) diacrylate film with incorporation of polystyrene nano-spheres.
    Yang W; Yu H; Li G; Wang Y; Liu L
    Biomed Microdevices; 2016 Dec; 18(6):107. PubMed ID: 27830453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multilayer microfluidic poly(ethylene glycol) diacrylate hydrogels.
    Cuchiara MP; West JL
    Methods Mol Biol; 2013; 949():387-401. PubMed ID: 23329455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Covalently-immobilized vascular endothelial growth factor promotes endothelial cell tubulogenesis in poly(ethylene glycol) diacrylate hydrogels.
    Leslie-Barbick JE; Moon JJ; West JL
    J Biomater Sci Polym Ed; 2009; 20(12):1763-79. PubMed ID: 19723440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PEGDA hydrogels as a replacement for animal tissues in mucoadhesion testing.
    Eshel-Green T; Eliyahu S; Avidan-Shlomovich S; Bianco-Peled H
    Int J Pharm; 2016 Jun; 506(1-2):25-34. PubMed ID: 27084292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decoupled control of stiffness and permeability with a cell-encapsulating poly(ethylene glycol) dimethacrylate hydrogel.
    Cha C; Kim SY; Cao L; Kong H
    Biomaterials; 2010 Jun; 31(18):4864-71. PubMed ID: 20347136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of Huh7.5 spheroid formation and functionality using modified PEG-based hydrogels of different stiffness.
    Lee BH; Kim MH; Lee JH; Seliktar D; Cho NJ; Tan LP
    PLoS One; 2015; 10(2):e0118123. PubMed ID: 25692976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A fast-degrading thiol-acrylate based hydrogel for cranial regeneration.
    Emmakah AM; Arman HE; Bragg JC; Greene T; Alvarez MB; Childress PJ; Goebel WS; Kacena MA; Lin CC; Chu TM
    Biomed Mater; 2017 Mar; 12(2):025011. PubMed ID: 28177302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tuning the dependency between stiffness and permeability of a cell encapsulating hydrogel with hydrophilic pendant chains.
    Cha C; Jeong JH; Shim J; Kong H
    Acta Biomater; 2011 Oct; 7(10):3719-28. PubMed ID: 21704737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.