These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
257 related articles for article (PubMed ID: 26831340)
1. Impact of nitric-oxide-mediated vasodilation and oxidative stress on renal medullary oxygenation: a modeling study. Fry BC; Edwards A; Layton AT Am J Physiol Renal Physiol; 2016 Feb; 310(3):F237-47. PubMed ID: 26831340 [TBL] [Abstract][Full Text] [Related]
2. Impacts of nitric oxide and superoxide on renal medullary oxygen transport and urine concentration. Fry BC; Edwards A; Layton AT Am J Physiol Renal Physiol; 2015 May; 308(9):F967-80. PubMed ID: 25651567 [TBL] [Abstract][Full Text] [Related]
3. Impact of nitric oxide-mediated vasodilation on outer medullary NaCl transport and oxygenation. Edwards A; Layton AT Am J Physiol Renal Physiol; 2012 Oct; 303(7):F907-17. PubMed ID: 22791340 [TBL] [Abstract][Full Text] [Related]
4. A mathematical model of O2 transport in the rat outer medulla. I. Model formulation and baseline results. Chen J; Layton AT; Edwards A Am J Physiol Renal Physiol; 2009 Aug; 297(2):F517-36. PubMed ID: 19403646 [TBL] [Abstract][Full Text] [Related]
5. A mathematical model of O2 transport in the rat outer medulla. II. Impact of outer medullary architecture. Chen J; Edwards A; Layton AT Am J Physiol Renal Physiol; 2009 Aug; 297(2):F537-48. PubMed ID: 19403645 [TBL] [Abstract][Full Text] [Related]
6. Modulation of outer medullary NaCl transport and oxygenation by nitric oxide and superoxide. Edwards A; Layton AT Am J Physiol Renal Physiol; 2011 Nov; 301(5):F979-96. PubMed ID: 21849492 [TBL] [Abstract][Full Text] [Related]
7. Nitric oxide and superoxide transport in a cross section of the rat outer medulla. I. Effects of low medullary oxygen tension. Edwards A; Layton AT Am J Physiol Renal Physiol; 2010 Sep; 299(3):F616-33. PubMed ID: 20534869 [TBL] [Abstract][Full Text] [Related]
8. Enhanced superoxide production in renal outer medulla of Dahl salt-sensitive rats reduces nitric oxide tubular-vascular cross-talk. Mori T; O'Connor PM; Abe M; Cowley AW Hypertension; 2007 Jun; 49(6):1336-41. PubMed ID: 17470722 [TBL] [Abstract][Full Text] [Related]
9. Molecular mechanisms and therapeutic strategies of chronic renal injury: physiological role of angiotensin II-induced oxidative stress in renal medulla. Mori T; Cowley AW; Ito S J Pharmacol Sci; 2006 Jan; 100(1):2-8. PubMed ID: 16404134 [TBL] [Abstract][Full Text] [Related]
10. Oxygen transport across vasa recta in the renal medulla. Zhang W; Edwards A Am J Physiol Heart Circ Physiol; 2002 Sep; 283(3):H1042-55. PubMed ID: 12181134 [TBL] [Abstract][Full Text] [Related]
11. Mathematical model of nitric oxide convection and diffusion in a renal medullary vas rectum. Zhang W; Edwards A J Math Biol; 2006 Sep; 53(3):385-420. PubMed ID: 16897017 [TBL] [Abstract][Full Text] [Related]
12. Oxygen transport in a cross section of the rat inner medulla: impact of heterogeneous distribution of nephrons and vessels. Fry BC; Layton AT Math Biosci; 2014 Dec; 258():68-76. PubMed ID: 25260928 [TBL] [Abstract][Full Text] [Related]
13. A model of oxygen transport in the rat renal medulla. Lee CJ; Gardiner BS; Evans RG; Smith DW Am J Physiol Renal Physiol; 2018 Dec; 315(6):F1787-F1811. PubMed ID: 30256129 [TBL] [Abstract][Full Text] [Related]
14. [Renal medullary circulation: morphological characteristics of vessels and their organization]. Kriz W Klin Wochenschr; 1982 Sep; 60(18):1063-9. PubMed ID: 7144053 [TBL] [Abstract][Full Text] [Related]
15. Role of nitric oxide in renal medullary oxygenation. Studies in isolated and intact rat kidneys. Brezis M; Heyman SN; Dinour D; Epstein FH; Rosen S J Clin Invest; 1991 Aug; 88(2):390-5. PubMed ID: 1864953 [TBL] [Abstract][Full Text] [Related]
16. Impact of renal medullary three-dimensional architecture on oxygen transport. Fry BC; Edwards A; Sgouralis I; Layton AT Am J Physiol Renal Physiol; 2014 Aug; 307(3):F263-72. PubMed ID: 24899054 [TBL] [Abstract][Full Text] [Related]
17. Angiotensin II-NAD(P)H oxidase-stimulated superoxide modifies tubulovascular nitric oxide cross-talk in renal outer medulla. Mori T; Cowley AW Hypertension; 2003 Oct; 42(4):588-93. PubMed ID: 12975384 [TBL] [Abstract][Full Text] [Related]
18. Interstitial water and solute recovery by inner medullary vasa recta. Edwards A; Delong MJ; Pallone TL Am J Physiol Renal Physiol; 2000 Feb; 278(2):F257-69. PubMed ID: 10662730 [TBL] [Abstract][Full Text] [Related]
19. Nitric oxide and superoxide transport in a cross section of the rat outer medulla. II. Reciprocal interactions and tubulovascular cross talk. Edwards A; Layton AT Am J Physiol Renal Physiol; 2010 Sep; 299(3):F634-47. PubMed ID: 20519375 [TBL] [Abstract][Full Text] [Related]
20. Sex-specific computational models of the spontaneously hypertensive rat kidneys: factors affecting nitric oxide bioavailability. Chen Y; Sullivan JC; Edwards A; Layton AT Am J Physiol Renal Physiol; 2017 Aug; 313(2):F174-F183. PubMed ID: 28356289 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]