BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 26831701)

  • 1. Affinity Purification Method for the Identification of Nonribosomal Peptide Biosynthetic Enzymes Using a Synthetic Probe for Adenylation Domains.
    Ishikawa F; Kakeya H
    Methods Mol Biol; 2016; 1401():63-76. PubMed ID: 26831701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Specific enrichment of nonribosomal peptide synthetase module by an affinity probe for adenylation domains.
    Ishikawa F; Kakeya H
    Bioorg Med Chem Lett; 2014 Feb; 24(3):865-9. PubMed ID: 24398296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Multiple-Labeling Strategy for Nonribosomal Peptide Synthetases Using Active-Site-Directed Proteomic Probes for Adenylation Domains.
    Ishikawa F; Suzuki T; Dohmae N; Kakeya H
    Chembiochem; 2015 Dec; 16(18):2590-4. PubMed ID: 26467472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A subdomain swap strategy for reengineering nonribosomal peptides.
    Kries H; Niquille DL; Hilvert D
    Chem Biol; 2015 May; 22(5):640-8. PubMed ID: 26000750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Active site-directed proteomic probes for adenylation domains in nonribosomal peptide synthetases.
    Konno S; Ishikawa F; Suzuki T; Dohmae N; Burkart MD; Kakeya H
    Chem Commun (Camb); 2015 Feb; 51(12):2262-5. PubMed ID: 25563804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional profiling of adenylation domains in nonribosomal peptide synthetases by competitive activity-based protein profiling.
    Kasai S; Konno S; Ishikawa F; Kakeya H
    Chem Commun (Camb); 2015 Nov; 51(87):15764-7. PubMed ID: 26365322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydroxamate-based colorimetric assay to assess amide bond formation by adenylation domain of nonribosomal peptide synthetases.
    Hara R; Suzuki R; Kino K
    Anal Biochem; 2015 May; 477():89-91. PubMed ID: 25615416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemoproteomic Profiling of Adenylation Domain Functions in Gramicidin S-Producing Non-ribosomal Peptide Synthetases.
    Ishikawa F; Tanabe G
    Methods Mol Biol; 2023; 2670():69-100. PubMed ID: 37184700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predictive, structure-based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains.
    Challis GL; Ravel J; Townsend CA
    Chem Biol; 2000 Mar; 7(3):211-24. PubMed ID: 10712928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurate Detection of Adenylation Domain Functions in Nonribosomal Peptide Synthetases by an Enzyme-linked Immunosorbent Assay System Using Active Site-directed Probes for Adenylation Domains.
    Ishikawa F; Miyamoto K; Konno S; Kasai S; Kakeya H
    ACS Chem Biol; 2015 Dec; 10(12):2816-26. PubMed ID: 26474351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Competitive Enzyme-Linked Immunosorbent Assay System for Adenylation Domains in Nonribosomal Peptide Synthetases.
    Ishikawa F; Kakeya H
    Chembiochem; 2016 Mar; 17(6):474-8. PubMed ID: 26748933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design, synthesis, and biological evaluation of α-hydroxyacyl-AMS inhibitors of amino acid adenylation enzymes.
    Davis TD; Mohandas P; Chiriac MI; Bythrow GV; Quadri LE; Tan DS
    Bioorg Med Chem Lett; 2016 Nov; 26(21):5340-5345. PubMed ID: 27692545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a chemical scaffold for inhibiting nonribosomal peptide synthetases in live bacterial cells.
    Ishikawa F; Konno S; Kakeya H; Tanabe G
    Beilstein J Org Chem; 2024; 20():445-451. PubMed ID: 38440174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical Labeling of Protein 4'-Phosphopantetheinylation in Surfactin-Producing Nonribosomal Peptide Synthetases.
    Ishikawa F; Tanabe G
    Methods Mol Biol; 2023; 2670():285-299. PubMed ID: 37184711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthetic cycle of the initiation module of a formylating nonribosomal peptide synthetase.
    Reimer JM; Aloise MN; Harrison PM; Schmeing TM
    Nature; 2016 Jan; 529(7585):239-42. PubMed ID: 26762462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cu-free cycloaddition for identifying catalytic active adenylation domains of nonribosomal peptide synthetases by phage display.
    Zou Y; Yin J
    Bioorg Med Chem Lett; 2008 Oct; 18(20):5664-7. PubMed ID: 18801656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Profiling Nonribosomal Peptide Synthetase Activities Using Chemical Proteomic Probes for Adenylation Domains.
    Ishikawa F; Konno S; Suzuki T; Dohmae N; Kakeya H
    ACS Chem Biol; 2015 Sep; 10(9):1989-97. PubMed ID: 26038981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression and purification of an adenylation domain from a eukaryotic nonribosomal peptide synthetase: using structural genomics tools for a challenging target.
    Lee TV; Lott JS; Johnson RD; Arcus VL
    Protein Expr Purif; 2010 Dec; 74(2):162-8. PubMed ID: 20716446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics profiling of gramicidin S synthetase A, a member of nonribosomal peptide synthetases.
    Sun X; Li H; Alfermann J; Mootz HD; Yang H
    Biochemistry; 2014 Dec; 53(50):7983-9. PubMed ID: 25437123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A chemical proteomic probe for detecting native carrier protein motifs in nonribosomal peptide synthetases.
    Kasai S; Ishikawa F; Suzuki T; Dohmae N; Kakeya H
    Chem Commun (Camb); 2016 Dec; 52(98):14129-14132. PubMed ID: 27869277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.