These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 26831775)

  • 1. Perturbation methods to track wireless optical wave propagation in a random medium.
    Bosu R; Prince S
    J Opt Soc Am A Opt Image Sci Vis; 2016 Feb; 33(2):244-50. PubMed ID: 26831775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. δ-expansion method for nonlinear stochastic differential equations describing wave propagation in a random medium.
    Van Gorder RA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 2):056712. PubMed ID: 21230624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Beam wave two-frequency mutual-coherence function and pulse propagation in random media: an analytic solution.
    Sreenivasiah I; Ishimaru A
    Appl Opt; 1979 May; 18(10):1613-8. PubMed ID: 20212901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reference-wave solution for the two-frequency propagator in a statistically homogeneous random medium.
    Bronshtein A; Lu IT; Mazar R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jan; 69(1 Pt 2):016607. PubMed ID: 14995736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Canonical perturbative approach to nonlinear systems with application to optical waves in layered Kerr media.
    Laine TA; Friberg AT
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jun; 61(6 Pt B):7098-109. PubMed ID: 11088407
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wave envelopes method for description of nonlinear acoustic wave propagation.
    Wójcik J; Nowicki A; Lewin PA; Bloomfield PE; Kujawska T; Filipczyński L
    Ultrasonics; 2006 Jul; 44(3):310-29. PubMed ID: 16780911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study on the propagation parameters of Bessel-Gaussian beams carrying optical vortices through atmospheric turbulence.
    Zhu K; Li S; Tang Y; Yu Y; Tang H
    J Opt Soc Am A Opt Image Sci Vis; 2012 Mar; 29(3):251-7. PubMed ID: 22472754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Orbitally invariant internally contracted multireference unitary coupled cluster theory and its perturbative approximation: theory and test calculations of second order approximation.
    Chen Z; Hoffmann MR
    J Chem Phys; 2012 Jul; 137(1):014108. PubMed ID: 22779638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reflection of a Gaussian beam from a nonlinear interface.
    Marcuse D
    Appl Opt; 1980 Sep; 19(18):3130-9. PubMed ID: 20234576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical wave phase fluctuations.
    Lukin VP; Pokasov VV
    Appl Opt; 1981 Jan; 20(1):121-35. PubMed ID: 20309076
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Propagation of polarized waves in inhomogeneous media.
    Charnotskii M
    J Opt Soc Am A Opt Image Sci Vis; 2016 Jul; 33(7):1385-94. PubMed ID: 27409697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anisotropic dynamics of optical vortex-beam propagating in biaxial crystals: a numerical method based on asymptotic expansion.
    Lu X; Chen L
    Opt Express; 2013 Apr; 21(7):8493-507. PubMed ID: 23571939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acoustic shock wave propagation in a heterogeneous medium: a numerical simulation beyond the parabolic approximation.
    Dagrau F; Rénier M; Marchiano R; Coulouvrat F
    J Acoust Soc Am; 2011 Jul; 130(1):20-32. PubMed ID: 21786874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical wave propagation in discrete random media with large particles: a treatment of the phase function.
    Ito S
    Appl Opt; 1993 Mar; 32(9):1652-6. PubMed ID: 20820298
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Approximate solution to the scalar wave equation for optical waveguides.
    Goyal IC; Gallawa RL; Ghatak AK
    Appl Opt; 1991 Jul; 30(21):2985-9. PubMed ID: 20706346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regular perturbation on the group-velocity dispersion parameter for nonlinear fibre-optical communications.
    Oliari V; Agrell E; Alvarado A
    Nat Commun; 2020 Feb; 11(1):933. PubMed ID: 32071316
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laplace transform homotopy perturbation method for the approximation of variational problems.
    Filobello-Nino U; Vazquez-Leal H; Rashidi MM; Sedighi HM; Perez-Sesma A; Sandoval-Hernandez M; Sarmiento-Reyes A; Contreras-Hernandez AD; Pereyra-Diaz D; Hoyos-Reyes C; Jimenez-Fernandez VM; Huerta-Chua J; Castro-Gonzalez F; Laguna-Camacho JR
    Springerplus; 2016; 5():276. PubMed ID: 27006884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. One-way approximation for the simulation of weak shock wave propagation in atmospheric flows.
    Gallin LJ; Rénier M; Gaudard E; Farges T; Marchiano R; Coulouvrat F
    J Acoust Soc Am; 2014 May; 135(5):2559-70. PubMed ID: 24815240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Far-field scattering model for wave propagation in random media.
    Rokhlin SI; Li J; Sha G
    J Acoust Soc Am; 2015 May; 137(5):2655-69. PubMed ID: 25994697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Free-space propagation of an aberrating Gaussian beam.
    Ronchi L
    Appl Opt; 1978 Aug; 17(16):2516-8. PubMed ID: 20203814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.