These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 26831775)

  • 21. Two-frequency mutual coherence function of a Gaussian beam pulse in weak optical turbulence: an analytic solution.
    Young CY; Ishimaru A; Andrews LC
    Appl Opt; 1996 Nov; 35(33):6522-6. PubMed ID: 21127676
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Temporal broadening of optical pulses propagating through non-Kolmogorov turbulence.
    Chen C; Yang H; Lou Y; Tong S; Liu R
    Opt Express; 2012 Mar; 20(7):7749-57. PubMed ID: 22453453
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Propagation of Gaussian-apodized paraxial beams through first-order optical systems via complex coordinate transforms and ray transfer matrices.
    Graf T; Christodoulides DN; Mills MS; Moloney JV; Venkataramani SC; Wright EM
    J Opt Soc Am A Opt Image Sci Vis; 2012 Sep; 29(9):1860-9. PubMed ID: 23201942
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Wave propagation in media having negative permittivity and permeability.
    Ziolkowski RW; Heyman E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 2):056625. PubMed ID: 11736134
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Numerical and analytical solutions for sound propagation and absorption in porous media at high sound pressure levels.
    Zhang B; Chen T; Zhao Y; Zhang W; Zhu J
    J Acoust Soc Am; 2012 Sep; 132(3):1436-49. PubMed ID: 22978873
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Range of turbulence-independent propagation and Rayleigh range of partially coherent beams in atmospheric turbulence.
    Dan Y; Zeng S; Hao B; Zhang B
    J Opt Soc Am A Opt Image Sci Vis; 2010 Mar; 27(3):426-34. PubMed ID: 20208932
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nonlinear optical interactions of wave packets in photonic crystals: Hamiltonian dynamics of effective fields.
    Volkov SN; Sipe JE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 2):066621. PubMed ID: 15697540
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Propagation of a finite optical beam in an inhomogeneous medium.
    Lutomirski RF; Yura HT
    Appl Opt; 1971 Jul; 10(7):1652-8. PubMed ID: 20111181
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Perturbation analysis of plane-wave transmission through a dielectric slab with Kerr-type nonlinearity.
    Zamani Aghaie K; Shahabadi M
    Opt Express; 2005 Aug; 13(17):6587-96. PubMed ID: 19498674
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spectral expansion method in problems of laser-beam propagation in the turbulent atmosphere.
    Aksenov VP; Mironov VL
    Opt Lett; 1978 Nov; 3(5):184-6. PubMed ID: 19684740
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Propagation of mechanical waves in a one-dimensional nonlinear disordered lattice.
    Richoux O; Depollier C; Hardy J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 2):026611. PubMed ID: 16605475
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Perturbation method for the second-order nonlinear effect of focused acoustic field around a scatterer in an ideal fluid.
    Liu G; Jayathilake PG; Khoo BC
    Ultrasonics; 2014 Feb; 54(2):576-85. PubMed ID: 24070825
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Coherence properties of retroreflected radiation in a power-law random medium.
    Mazar R; Bronshtein A
    Opt Lett; 1990 Jul; 15(14):766-8. PubMed ID: 19768071
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Statistical theory for incoherent light propagation in nonlinear media.
    Hall B; Lisak M; Anderson D; Fedele R; Semenov VE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Mar; 65(3 Pt 2A):035602. PubMed ID: 11909156
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Accurate numerical solutions for the frequency cross correlation of intensity fluctuations in a random medium.
    Leonard SR; Uscinski BJ
    Appl Opt; 1993 May; 32(15):2656-63. PubMed ID: 20820427
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ultrasound-modulated optical tomography: recovery of amplitude of vibration in the insonified region from boundary measurement of light correlation.
    Varma HM; Mohanan KP; Hyvönen N; Nandakumaran AK; Vasu RM
    J Opt Soc Am A Opt Image Sci Vis; 2011 Nov; 28(11):2322-31. PubMed ID: 22048300
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Wave-optical modeling beyond the thin-element-approximation.
    Schmidt S; Tiess T; Schröter S; Hambach R; Jäger M; Bartelt H; Tünnermann A; Gross H
    Opt Express; 2016 Dec; 24(26):30188-30200. PubMed ID: 28059295
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multiple transmitter performance with appropriate amplitude modulation for free-space optical communication.
    Tellez JA; Schmidt JD
    Appl Opt; 2011 Aug; 50(24):4737-45. PubMed ID: 21857696
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of higher-order scattering in solutions to the forward and inverse optical-imaging problems in random media.
    Sevick-Muraca EM; Heintzelman DL; Lee J; Troy TL; Paithankar DY
    Appl Opt; 1997 Dec; 36(34):9058-67. PubMed ID: 18264465
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Homotopy perturbation method: a versatile tool to evaluate linear and nonlinear fuzzy Volterra integral equations of the second kind.
    Narayanamoorthy S; Sathiyapriya SP
    Springerplus; 2016; 5():387. PubMed ID: 27047713
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.