BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

495 related articles for article (PubMed ID: 26831908)

  • 21. A high-resolution single-molecule sequencing-based Arabidopsis transcriptome using novel methods of Iso-seq analysis.
    Zhang R; Kuo R; Coulter M; Calixto CPG; Entizne JC; Guo W; Marquez Y; Milne L; Riegler S; Matsui A; Tanaka M; Harvey S; Gao Y; Wießner-Kroh T; Paniagua A; Crespi M; Denby K; Hur AB; Huq E; Jantsch M; Jarmolowski A; Koester T; Laubinger S; Li QQ; Gu L; Seki M; Staiger D; Sunkar R; Szweykowska-Kulinska Z; Tu SL; Wachter A; Waugh R; Xiong L; Zhang XN; Conesa A; Reddy ASN; Barta A; Kalyna M; Brown JWS
    Genome Biol; 2022 Jul; 23(1):149. PubMed ID: 35799267
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Discerning novel splice junctions derived from RNA-seq alignment: a deep learning approach.
    Zhang Y; Liu X; MacLeod J; Liu J
    BMC Genomics; 2018 Dec; 19(1):971. PubMed ID: 30591034
    [TBL] [Abstract][Full Text] [Related]  

  • 23. PASSion: a pattern growth algorithm-based pipeline for splice junction detection in paired-end RNA-Seq data.
    Zhang Y; Lameijer EW; 't Hoen PA; Ning Z; Slagboom PE; Ye K
    Bioinformatics; 2012 Feb; 28(4):479-86. PubMed ID: 22219203
    [TBL] [Abstract][Full Text] [Related]  

  • 24. EMSAR: estimation of transcript abundance from RNA-seq data by mappability-based segmentation and reclustering.
    Lee S; Seo CH; Alver BH; Lee S; Park PJ
    BMC Bioinformatics; 2015 Sep; 16():278. PubMed ID: 26335049
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Accurate inference of isoforms from multiple sample RNA-Seq data.
    Tasnim M; Ma S; Yang EW; Jiang T; Li W
    BMC Genomics; 2015; 16 Suppl 2(Suppl 2):S15. PubMed ID: 25708199
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Next-generation sequencing facilitates quantitative analysis of wild-type and Nrl(-/-) retinal transcriptomes.
    Brooks MJ; Rajasimha HK; Roger JE; Swaroop A
    Mol Vis; 2011; 17():3034-54. PubMed ID: 22162623
    [TBL] [Abstract][Full Text] [Related]  

  • 27. QuaPra: Efficient transcript assembly and quantification using quadratic programming with Apriori algorithm.
    Ji X; Tong W; Ning B; Mason CE; Kreil DP; Labaj PP; Chen G; Shi T
    Sci China Life Sci; 2019 Jul; 62(7):937-946. PubMed ID: 31124003
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Partitioning RNAs by length improves transcriptome reconstruction from short-read RNA-seq data.
    Ringeling FR; Chakraborty S; Vissers C; Reiman D; Patel AM; Lee KH; Hong A; Park CW; Reska T; Gagneur J; Chang H; Spletter ML; Yoon KJ; Ming GL; Song H; Canzar S
    Nat Biotechnol; 2022 May; 40(5):741-750. PubMed ID: 35013600
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CLASS2: accurate and efficient splice variant annotation from RNA-seq reads.
    Song L; Sabunciyan S; Florea L
    Nucleic Acids Res; 2016 Jun; 44(10):e98. PubMed ID: 26975657
    [TBL] [Abstract][Full Text] [Related]  

  • 30. QuickRNASeq lifts large-scale RNA-seq data analyses to the next level of automation and interactive visualization.
    Zhao S; Xi L; Quan J; Xi H; Zhang Y; von Schack D; Vincent M; Zhang B
    BMC Genomics; 2016 Jan; 17():39. PubMed ID: 26747388
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transcript Identification Through Long-Read Sequencing.
    Seki M; Oka M; Xu L; Suzuki A; Suzuki Y
    Methods Mol Biol; 2021; 2284():531-541. PubMed ID: 33835462
    [TBL] [Abstract][Full Text] [Related]  

  • 32. NSMAP: a method for spliced isoforms identification and quantification from RNA-Seq.
    Xia Z; Wen J; Chang CC; Zhou X
    BMC Bioinformatics; 2011 May; 12():162. PubMed ID: 21575225
    [TBL] [Abstract][Full Text] [Related]  

  • 33. JAGuaR: junction alignments to genome for RNA-seq reads.
    Butterfield YS; Kreitzman M; Thiessen N; Corbett RD; Li Y; Pang J; Ma YP; Jones SJ; Birol İ
    PLoS One; 2014; 9(7):e102398. PubMed ID: 25062255
    [TBL] [Abstract][Full Text] [Related]  

  • 34. ASGAL: aligning RNA-Seq data to a splicing graph to detect novel alternative splicing events.
    Denti L; Rizzi R; Beretta S; Vedova GD; Previtali M; Bonizzoni P
    BMC Bioinformatics; 2018 Nov; 19(1):444. PubMed ID: 30458725
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transcriptome Sequencing: RNA-Seq.
    Zhang H; He L; Cai L
    Methods Mol Biol; 2018; 1754():15-27. PubMed ID: 29536435
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inference of isoforms from short sequence reads.
    Feng J; Li W; Jiang T
    J Comput Biol; 2011 Mar; 18(3):305-21. PubMed ID: 21385036
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gene expression and splicing alterations analyzed by high throughput RNA sequencing of chronic lymphocytic leukemia specimens.
    Liao W; Jordaan G; Nham P; Phan RT; Pelegrini M; Sharma S
    BMC Cancer; 2015 Oct; 15():714. PubMed ID: 26474785
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Alternative Splicing Signatures in RNA-seq Data: Percent Spliced in (PSI).
    Schafer S; Miao K; Benson CC; Heinig M; Cook SA; Hubner N
    Curr Protoc Hum Genet; 2015 Oct; 87():11.16.1-11.16.14. PubMed ID: 26439713
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Polyester: simulating RNA-seq datasets with differential transcript expression.
    Frazee AC; Jaffe AE; Langmead B; Leek JT
    Bioinformatics; 2015 Sep; 31(17):2778-84. PubMed ID: 25926345
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Methods to study splicing from high-throughput RNA sequencing data.
    Alamancos GP; Agirre E; Eyras E
    Methods Mol Biol; 2014; 1126():357-97. PubMed ID: 24549677
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.