These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
278 related articles for article (PubMed ID: 26831938)
1. Mapping time-course mitochondrial adaptations in the kidney in experimental diabetes. Coughlan MT; Nguyen TV; Penfold SA; Higgins GC; Thallas-Bonke V; Tan SM; Van Bergen NJ; Sourris KC; Harcourt BE; Thorburn DR; Trounce IA; Cooper ME; Forbes JM Clin Sci (Lond); 2016 May; 130(9):711-20. PubMed ID: 26831938 [TBL] [Abstract][Full Text] [Related]
2. Delineating a role for the mitochondrial permeability transition pore in diabetic kidney disease by targeting cyclophilin D. Lindblom RSJ; Higgins GC; Nguyen TV; Arnstein M; Henstridge DC; Granata C; Snelson M; Thallas-Bonke V; Cooper ME; Forbes JM; Coughlan MT Clin Sci (Lond); 2020 Jan; 134(2):239-259. PubMed ID: 31943002 [TBL] [Abstract][Full Text] [Related]
3. Deletion of Uncoupling Protein-2 reduces renal mitochondrial leak respiration, intrarenal hypoxia and proteinuria in a mouse model of type 1 diabetes. Friederich-Persson M; Persson P; Hansell P; Palm F Acta Physiol (Oxf); 2018 Aug; 223(4):e13058. PubMed ID: 29480974 [TBL] [Abstract][Full Text] [Related]
4. Diabetes-induced up-regulation of uncoupling protein-2 results in increased mitochondrial uncoupling in kidney proximal tubular cells. Friederich M; Fasching A; Hansell P; Nordquist L; Palm F Biochim Biophys Acta; 2008; 1777(7-8):935-40. PubMed ID: 18439413 [TBL] [Abstract][Full Text] [Related]
5. Temporal increases in urinary carboxymethyllysine correlate with albuminuria development in diabetes. Coughlan MT; Forbes JM Am J Nephrol; 2011; 34(1):9-17. PubMed ID: 21654162 [TBL] [Abstract][Full Text] [Related]
6. DsbA-L deficiency exacerbates mitochondrial dysfunction of tubular cells in diabetic kidney disease. Gao P; Yang M; Chen X; Xiong S; Liu J; Sun L Clin Sci (Lond); 2020 Apr; 134(7):677-694. PubMed ID: 32167139 [TBL] [Abstract][Full Text] [Related]
7. Complement C5a Induces Renal Injury in Diabetic Kidney Disease by Disrupting Mitochondrial Metabolic Agility. Tan SM; Ziemann M; Thallas-Bonke V; Snelson M; Kumar V; Laskowski A; Nguyen TV; Huynh K; Clarke MV; Libianto R; Baker ST; Skene A; Power DA; MacIsaac RJ; Henstridge DC; Wetsel RA; El-Osta A; Meikle PJ; Wilson SG; Forbes JM; Cooper ME; Ekinci EI; Woodruff TM; Coughlan MT Diabetes; 2020 Jan; 69(1):83-98. PubMed ID: 31624141 [TBL] [Abstract][Full Text] [Related]
8. Correlation between mitochondrial enlargement in renal proximal tubules and microalbuminuria in rats with early streptozotocin-induced diabetes. Kaneda K; Iwao J; Sakata N; Takebayashi S Acta Pathol Jpn; 1992 Dec; 42(12):855-60. PubMed ID: 1290323 [TBL] [Abstract][Full Text] [Related]
9. Mitochondrial superoxide plays a crucial role in the development of mitochondrial dysfunction during high glucose exposure in rat renal proximal tubular cells. Munusamy S; MacMillan-Crow LA Free Radic Biol Med; 2009 Apr; 46(8):1149-57. PubMed ID: 19439219 [TBL] [Abstract][Full Text] [Related]
10. Disruption of renal tubular mitochondrial quality control by Myo-inositol oxygenase in diabetic kidney disease. Zhan M; Usman IM; Sun L; Kanwar YS J Am Soc Nephrol; 2015 Jun; 26(6):1304-21. PubMed ID: 25270067 [TBL] [Abstract][Full Text] [Related]
11. Adaptive changes in renal mitochondrial redox status in diabetic nephropathy. Putt DA; Zhong Q; Lash LH Toxicol Appl Pharmacol; 2012 Jan; 258(2):188-98. PubMed ID: 22085922 [TBL] [Abstract][Full Text] [Related]
12. Selenium-deficient diet induces renal oxidative stress and injury via TGF-beta1 in normal and diabetic rats. Reddi AS; Bollineni JS Kidney Int; 2001 Apr; 59(4):1342-53. PubMed ID: 11260395 [TBL] [Abstract][Full Text] [Related]
13. Mitochondria in Diabetic Kidney Disease. Ahmad AA; Draves SO; Rosca M Cells; 2021 Oct; 10(11):. PubMed ID: 34831168 [TBL] [Abstract][Full Text] [Related]
14. Oxidative stress and susceptibility to mitochondrial permeability transition precedes the onset of diabetes in autoimmune non-obese diabetic mice. Malaguti C; La Guardia PG; Leite AC; Oliveira DN; de Lima Zollner RL; Catharino RR; Vercesi AE; Oliveira HC Free Radic Res; 2014 Dec; 48(12):1494-504. PubMed ID: 25236567 [TBL] [Abstract][Full Text] [Related]
15. Glycation of mitochondrial proteins from diabetic rat kidney is associated with excess superoxide formation. Rosca MG; Mustata TG; Kinter MT; Ozdemir AM; Kern TS; Szweda LI; Brownlee M; Monnier VM; Weiss MF Am J Physiol Renal Physiol; 2005 Aug; 289(2):F420-30. PubMed ID: 15814529 [TBL] [Abstract][Full Text] [Related]
16. Prohibitin protects proximal tubule epithelial cells against oxidative injury through mitochondrial pathways. Ye J; Li J; Xia R; Zhou M; Yu L Free Radic Res; 2015; 49(11):1393-403. PubMed ID: 26198983 [TBL] [Abstract][Full Text] [Related]
17. The Mitochondria-Targeted Metabolic Tubular Injury in Diabetic Kidney Disease. Jiang H; Shao X; Jia S; Qu L; Weng C; Shen X; Wang Y; Huang H; Wang Y; Wang C; Feng S; Wang M; Feng H; Geekiyanage S; Davidson AJ; Chen J Cell Physiol Biochem; 2019; 52(2):156-171. PubMed ID: 30816665 [TBL] [Abstract][Full Text] [Related]
18. Effect of streptozotocin-induced diabetes on oxidative energy metabolism in rat kidney mitochondria. A comparative study of early and late effects. Katyare SS; Satav JG Diabetes Obes Metab; 2005 Sep; 7(5):555-62. PubMed ID: 16050948 [TBL] [Abstract][Full Text] [Related]
19. Polydatin Inhibits Mitochondrial Dysfunction in the Renal Tubular Epithelial Cells of a Rat Model of Sepsis-Induced Acute Kidney Injury. Gao Y; Zeng Z; Li T; Xu S; Wang X; Chen Z; Lin C Anesth Analg; 2015 Nov; 121(5):1251-60. PubMed ID: 26484460 [TBL] [Abstract][Full Text] [Related]
20. Melatonin reduces urinary excretion of N-acetyl-beta-D-glucosaminidase, albumin and renal oxidative markers in diabetic rats. Oktem F; Ozguner F; Yilmaz HR; Uz E; Dündar B Clin Exp Pharmacol Physiol; 2006; 33(1-2):95-101. PubMed ID: 16445706 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]