These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 26831959)

  • 1. Design and fabrication of complicated diffractive optical elements on multiple curved surfaces.
    Tian R; Liu J; Li X; Wang X; Wang Y
    Opt Express; 2015 Dec; 23(26):32917-25. PubMed ID: 26831959
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D optical intensity modulation on curved surfaces by optimization method and its application to fabricate arbitrary patterns.
    Wang X; Liu J; Han J; Zhang N; Li X; Hu B; Wang Y
    Opt Express; 2014 Aug; 22(17):20387-95. PubMed ID: 25321247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and fabrication of DOEs on multi- freeform surfaces via complex amplitude modulation.
    Liu P; Liu J; Li X; Gao Q; Zhao T; Duan X
    Opt Express; 2017 Nov; 25(24):30061-30072. PubMed ID: 29221041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of optical intensity on curved surfaces and its application to fabricate DOEs with arbitrary profile by interference.
    Zhao H; Liu J; Xiao R; Li X; Shi R; Liu P; Zhong H; Zou B; Wang Y
    Opt Express; 2013 Feb; 21(4):5140-8. PubMed ID: 23482048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lithographic fabrication of diffractive optical elements in hybrid sol-gel glass on 3-D curved surfaces.
    Wang T; Yu W; Zhang D; Li C; Zhang H; Xu W; Xu Z; Liu H; Sun Q; Lu Z
    Opt Express; 2010 Nov; 18(24):25102-7. PubMed ID: 21164856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of diffractive optical elements on 3-D curved surfaces by capillary force lithography.
    Zhang D; Yu W; Wang T; Lu Z; Sun Q
    Opt Express; 2010 Jul; 18(14):15009-16. PubMed ID: 20639987
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and fabricate freeform holographic optical elements on curved optical surfaces using holographic printing.
    Shu T; Pei C; Wu R; Li H; Liu X
    Opt Lett; 2023 Dec; 48(24):6537-6540. PubMed ID: 38099793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diffractive optical elements for the formation of "light bottle" intensity distributions.
    Pavelyev V; Osipov V; Kachalov D; Khonina S; Cheng W; Gaidukeviciute A; Chichkov B
    Appl Opt; 2012 Jun; 51(18):4215-8. PubMed ID: 22722300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Designing and fabricating diffractive optical elements with a complex profile by interference.
    Shi R; Liu J; Xu J; Liu D; Pan Y; Xie J; Wang Y
    Opt Lett; 2011 Oct; 36(20):4053-5. PubMed ID: 22002383
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inverse design and demonstration of high-performance wide-angle diffractive optical elements.
    Kim DC; Hermerschmidt A; Dyachenko P; Scharf T
    Opt Express; 2020 Jul; 28(15):22321-22333. PubMed ID: 32752497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-level diffractive optics for single laser exposure fabrication of telecom-band diamond-like 3-dimensional photonic crystals.
    Chanda D; Abolghasemi LE; Haque M; Ng ML; Herman PR
    Opt Express; 2008 Sep; 16(20):15402-14. PubMed ID: 18825176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laser fabrication of diffractive optical elements based on detour-phase computer-generated holograms for two-dimensional Airy beams.
    Călin BŞ; Preda L; Jipa F; Zamfirescu M
    Appl Opt; 2018 Feb; 57(6):1367-1372. PubMed ID: 29469838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cost-effective mass fabrication of multilevel diffractive optical elements by use of a single optical exposure with a gray-scale mask on high-energy beam-sensitive glass.
    Däschner W; Long P; Stein R; Wu C; Lee SH
    Appl Opt; 1997 Jul; 36(20):4675-80. PubMed ID: 18259264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of large diffractive optical elements in thick film on a concave lens surface.
    Xie Y; Lu Z; Li F
    Opt Express; 2003 May; 11(9):992-5. PubMed ID: 19465961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gray-scale masks for diffractive-optics fabrication: I. Commercial slide imagers.
    Suleski TJ; O'Shea DC
    Appl Opt; 1995 Nov; 34(32):7507-17. PubMed ID: 21060625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laser direct-writing lithography equipment system for rapid and μm-precision fabrication on curved surfaces with large sag heights.
    Ai J; Du Q; Qin Z; Liu J; Zeng X
    Opt Express; 2018 Aug; 26(16):20965-20974. PubMed ID: 30119403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FibAR: Embedding Optical Fibers in 3D Printed Objects for Active Markers in Dynamic Projection Mapping.
    Tone D; Iwai D; Hiura S; Sato K
    IEEE Trans Vis Comput Graph; 2020 May; 26(5):2030-2040. PubMed ID: 32070979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Realization of binary radial diffractive optical elements by two-photon polymerization technique.
    Osipov V; Pavelyev V; Kachalov D; Zukauskas A; Chichkov B
    Opt Express; 2010 Dec; 18(25):25808-14. PubMed ID: 21164925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Utilization of Resist Stencil Lithography for Multidimensional Fabrication on a Curved Surface.
    Cai H; Meng Q; Ding H; Zhang K; Lin Y; Ren W; Yu X; Wu Y; Zhang G; Li M; Pan N; Qi Z; Tian Y; Luo Y; Wang X
    ACS Nano; 2018 Sep; 12(9):9626-9632. PubMed ID: 30189134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of silicon molds with multi-level, non-planar, micro- and nano-scale features.
    Azimi S; Dang ZY; Ansari K; Breese MB
    Nanotechnology; 2014 Sep; 25(37):375301. PubMed ID: 25148117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.