These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 26832025)

  • 1. Mode-resolved Fabry-Perot experiment in low-loss Bragg-reflection waveguides.
    Pressl B; Günthner T; Laiho K; Geßler J; Kamp M; Höfling S; Schneider C; Weihs G
    Opt Express; 2015 Dec; 23(26):33608-21. PubMed ID: 26832025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compact wavelength splitter based on self-imaging principles in Bragg reflection waveguides.
    Chen B; Huang L; Li Y; Liu C; Liu G
    Appl Opt; 2012 Oct; 51(29):7124-9. PubMed ID: 23052094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uncovering dispersion properties in semiconductor waveguides to study photon-pair generation.
    Laiho K; Pressl B; Schlager A; Suchomel H; Kamp M; Höfling S; Schneider C; Weihs G
    Nanotechnology; 2016 Oct; 27(43):434003. PubMed ID: 27659042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On-chip Bragg grating waveguides and Fabry-Perot resonators for long-wave infrared operation up to 8.4 µm.
    Liu Q; Ramirez JM; Vakarin V; Le Roux X; Frigerio J; Ballabio A; Simola ET; Alonso-Ramos C; Benedikovic D; Bouville D; Vivien L; Isella G; Marris-Morini D
    Opt Express; 2018 Dec; 26(26):34366-34372. PubMed ID: 30650859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-mode GaAs/AIGaAs W waveguides with a low propagation loss.
    Byun YT; Park KH; Kim SH; Choi SS; Lim TK
    Appl Opt; 1996 Feb; 35(6):928-33. PubMed ID: 21069091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation of paired photons in a quantum separable state in Bragg reflection waveguides.
    Svozilík J; Hendrych M; Helmy AS; Torres JP
    Opt Express; 2011 Feb; 19(4):3115-23. PubMed ID: 21369133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mode imaging and loss evaluation of semiconductor waveguides.
    Mochizuki T; Kim C; Yoshita M; Nakamura T; Akiyama H; Pfeiffer LN; West KW
    Rev Sci Instrum; 2014 May; 85(5):053109. PubMed ID: 24880355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chip-scale spectrometry based on tapered hollow Bragg waveguides.
    DeCorby RG; Ponnampalam N; Epp E; Allen T; McMullin JN
    Opt Express; 2009 Sep; 17(19):16632-45. PubMed ID: 19770879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrically driven hybrid Si/III-V Fabry-Pérot lasers based on adiabatic mode transformers.
    Ben Bakir B; Descos A; Olivier N; Bordel D; Grosse P; Augendre E; Fulbert L; Fedeli JM
    Opt Express; 2011 May; 19(11):10317-25. PubMed ID: 21643289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanofiber Fabry-Perot microresonator for nonlinear optics and cavity quantum electrodynamics.
    Wuttke C; Becker M; Brückner S; Rothhardt M; Rauschenbeutel A
    Opt Lett; 2012 Jun; 37(11):1949-51. PubMed ID: 22660083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Broadband high reflectivity in subwavelength-grating slab waveguides.
    Tian H; Cui X; Du Y; Tan P; Shi G; Zhou Z
    Opt Express; 2015 Oct; 23(21):27174-9. PubMed ID: 26480378
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mode control and mode conversion in nonlinear aluminum nitride waveguides.
    Stegmaier M; Pernice WH
    Opt Express; 2013 Nov; 21(22):26742-61. PubMed ID: 24216896
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical mode conversion in coupled Fabry-Perot resonators.
    Stone M; Suleymanzade A; Taneja L; Schuster DI; Simon J
    Opt Lett; 2021 Jan; 46(1):21-24. PubMed ID: 33362003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of a proposed extension to the Fabry-Perot technique for measurements of loss in semiconductor optical waveguides.
    Tomlinson WJ; Deri RJ
    Opt Lett; 1991 Nov; 16(21):1659-61. PubMed ID: 19784100
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization and reduction of spectral distortions in silicon-on-insulator integrated Bragg gratings.
    Simard AD; Beaudin G; Aimez V; Painchaud Y; Larochelle S
    Opt Express; 2013 Oct; 21(20):23145-59. PubMed ID: 24104229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sub-picosecond pulse generation by 40-GHz passively mode-locked quantum-dash 1-mm-long Fabry-Pérot laser diode.
    Latkowski S; Maldonado-Basilio R; Landais P
    Opt Express; 2009 Oct; 17(21):19166-72. PubMed ID: 20372653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Demonstration of UV-written waveguides, Bragg gratings and cavities at 780 nm, and an original experimental measurement of group delay.
    Lepert G; Trupke M; Hinds EA; Rogers H; Gates JC; Smith PG
    Opt Express; 2011 Dec; 19(25):24933-43. PubMed ID: 22273886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultra-broadband semiconductor laser.
    Gmachl C; Sivco DL; Colombelli R; Capasso F; Cho AY
    Nature; 2002 Feb; 415(6874):883-7. PubMed ID: 11859362
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Losses at corner bends in dielectric waveguides.
    Taylor HF
    Appl Opt; 1977 Mar; 16(3):711-6. PubMed ID: 20168567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cavity quantum electrodynamics with Anderson-localized modes.
    Sapienza L; Thyrrestrup H; Stobbe S; Garcia PD; Smolka S; Lodahl P
    Science; 2010 Mar; 327(5971):1352-5. PubMed ID: 20223981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.