BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 26832572)

  • 1. Microfluidic device for continuous single cells analysis via Raman spectroscopy enhanced by integrated plasmonic nanodimers.
    Perozziello G; Candeloro P; De Grazia A; Esposito F; Allione M; Coluccio ML; Tallerico R; Valpapuram I; Tirinato L; Das G; Giugni A; Torre B; Veltri P; Kruhne U; Della Valle G; Di Fabrizio E
    Opt Express; 2016 Jan; 24(2):A180-90. PubMed ID: 26832572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dielectrophoresis-Raman spectroscopy system for analysing suspended nanoparticles.
    Chrimes AF; Kayani AA; Khoshmanesh K; Stoddart PR; Mulvaney P; Mitchell A; Kalantar-Zadeh K
    Lab Chip; 2011 Mar; 11(5):921-8. PubMed ID: 21267497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tumour cell identification by means of Raman spectroscopy in combination with optical traps and microfluidic environments.
    Dochow S; Krafft C; Neugebauer U; Bocklitz T; Henkel T; Mayer G; Albert J; Popp J
    Lab Chip; 2011 Apr; 11(8):1484-90. PubMed ID: 21340095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An integrated optofluidic platform for Raman-activated cell sorting.
    Lau AY; Lee LP; Chan JW
    Lab Chip; 2008 Jul; 8(7):1116-20. PubMed ID: 18584087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinguishing cancer cell lines at a single living cell level via detection of sialic acid by dual-channel plasmonic imaging and by using a SERS-microfluidic droplet platform.
    Cong L; Liang L; Cao F; Sun D; Yue J; Xu W; Liang C; Xu S
    Mikrochim Acta; 2019 May; 186(6):367. PubMed ID: 31115772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical guiding-based cell focusing for Raman flow cell cytometer.
    Verma RS; Ahlawat S; Uppal A
    Analyst; 2018 May; 143(11):2648-2655. PubMed ID: 29756139
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optofluidic SERS chip with plasmonic nanoprobes self-aligned along microfluidic channels.
    Oh YJ; Jeong KH
    Lab Chip; 2014 Mar; 14(5):865-8. PubMed ID: 24452813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Raman-activated cell sorting based on dielectrophoretic single-cell trap and release.
    Zhang P; Ren L; Zhang X; Shan Y; Wang Y; Ji Y; Yin H; Huang WE; Xu J; Ma B
    Anal Chem; 2015 Feb; 87(4):2282-9. PubMed ID: 25607599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Convenient formation of nanoparticle aggregates on microfluidic chips for highly sensitive SERS detection of biomolecules.
    Zhou J; Ren K; Zhao Y; Dai W; Wu H
    Anal Bioanal Chem; 2012 Feb; 402(4):1601-9. PubMed ID: 22127578
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An optofluidic device for surface enhanced Raman spectroscopy.
    Wang M; Jing N; Chou IH; Cote GL; Kameoka J
    Lab Chip; 2007 May; 7(5):630-2. PubMed ID: 17476383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isotachophoretic free-flow electrophoretic focusing and SERS detection of myoglobin inside a miniaturized device.
    Becker M; Budich C; Deckert V; Janasek D
    Analyst; 2009 Jan; 134(1):38-40. PubMed ID: 19082172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards high-throughput microfluidic Raman-activated cell sorting.
    Zhang Q; Zhang P; Gou H; Mou C; Huang WE; Yang M; Xu J; Ma B
    Analyst; 2015 Sep; 140(18):6163-74. PubMed ID: 26225617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiplexed detection of aquaculture fungicides using a pump-free optofluidic SERS microsystem.
    Yazdi SH; White IM
    Analyst; 2013 Jan; 138(1):100-3. PubMed ID: 23103967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ dynamic measurements of the enhanced SERS signal using an optoelectrofluidic SERS platform.
    Hwang H; Han D; Oh YJ; Cho YK; Jeong KH; Park JK
    Lab Chip; 2011 Aug; 11(15):2518-25. PubMed ID: 21674105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface-enhanced Raman scattering (SERS) optrodes for multiplexed on-chip sensing of nile blue A and oxazine 720.
    Fan M; Wang P; Escobedo C; Sinton D; Brolo AG
    Lab Chip; 2012 Apr; 12(8):1554-60. PubMed ID: 22398836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laminar flow mediated continuous single-cell analysis on a novel poly(dimethylsiloxane) microfluidic chip.
    Deng B; Tian Y; Yu X; Song J; Guo F; Xiao Y; Zhang Z
    Anal Chim Acta; 2014 Apr; 820():104-11. PubMed ID: 24745743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A microfluidic system enabling Raman measurements of the oxygenation cycle in single optically trapped red blood cells.
    Ramser K; Enger J; Goksör M; Hanstorp D; Logg K; Käll M
    Lab Chip; 2005 Apr; 5(4):431-6. PubMed ID: 15791341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-cell trapping and selective treatment via co-flow within a microfluidic platform.
    Benavente-Babace A; Gallego-Pérez D; Hansford DJ; Arana S; Pérez-Lorenzo E; Mujika M
    Biosens Bioelectron; 2014 Nov; 61():298-305. PubMed ID: 24907537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single channel layer, single sheath-flow inlet microfluidic flow cytometer with three-dimensional hydrodynamic focusing.
    Lin SC; Yen PW; Peng CC; Tung YC
    Lab Chip; 2012 Sep; 12(17):3135-41. PubMed ID: 22763751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous cell sorting in a flow based on single cell resonance Raman spectra.
    McIlvenna D; Huang WE; Davison P; Glidle A; Cooper J; Yin H
    Lab Chip; 2016 Apr; 16(8):1420-9. PubMed ID: 26974400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.