These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 26832824)

  • 1. Rational optimization of amber suppressor tRNAs toward efficient incorporation of a non-natural amino acid into protein in a eukaryotic wheat germ extract.
    Ogawa A; Namba Y; Gakumasawa M
    Org Biomol Chem; 2016 Mar; 14(9):2671-8. PubMed ID: 26832824
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improvement of in vitro-transcribed amber suppressor tRNAs toward higher suppression efficiency in wheat germ extract.
    Ogawa A; Doi Y; Matsushita N
    Org Biomol Chem; 2011 Dec; 9(24):8495-503. PubMed ID: 22068346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-yield cell-free protein synthesis for site-specific incorporation of unnatural amino acids at two sites.
    Ozawa K; Loscha KV; Kuppan KV; Loh CT; Dixon NE; Otting G
    Biochem Biophys Res Commun; 2012 Feb; 418(4):652-6. PubMed ID: 22293204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comprehensive screening of amber suppressor tRNAs suitable for incorporation of non-natural amino acids in a cell-free translation system.
    Taira H; Matsushita Y; Kojima K; Shiraga K; Hohsaka T
    Biochem Biophys Res Commun; 2008 Sep; 374(2):304-8. PubMed ID: 18634752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved amber and opal suppressor tRNAs for incorporation of unnatural amino acids in vivo. Part 1: minimizing misacylation.
    Rodriguez EA; Lester HA; Dougherty DA
    RNA; 2007 Oct; 13(10):1703-14. PubMed ID: 17698638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of amber suppressor tRNAs appropriate for incorporation of nonnatural amino acids.
    Taira H; Matsushita Y; Kojima K; Hohsaka T
    Nucleic Acids Symp Ser (Oxf); 2006; (50):233-4. PubMed ID: 17150903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biofunction-assisted DNA detection through RNase H-enhanced 3' processing of a premature tRNA probe in a wheat germ extract.
    Ogawa A; Tabuchi J; Doi Y; Takamatsu M
    Bioorg Med Chem Lett; 2016 Aug; 26(15):3658-61. PubMed ID: 27289318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Screening of amber suppressor tRNAs suitable to introduce nonnatural amino acids into proteins by real-time monitoring of cell-free translation.
    Iijima I; Hohsaka T
    Nucleic Acids Symp Ser (Oxf); 2009; (53):297-8. PubMed ID: 19749378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Suppressor tRNA-based Biosensors for Detecting Analytes.
    Ogawa A
    Anal Sci; 2021 Mar; 37(3):407-414. PubMed ID: 33012761
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimisation of a system for the co-translational incorporation of a keto amino acid and its application to a tumour-specific Anticalin.
    Reichert AJ; Poxleitner G; Dauner M; Skerra A
    Protein Eng Des Sel; 2015 Dec; 28(12):553-65. PubMed ID: 26405058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biofunction-assisted aptasensors based on ligand-dependent 3' processing of a suppressor tRNA in a wheat germ extract.
    Ogawa A; Tabuchi J
    Org Biomol Chem; 2015 Jun; 13(24):6681-5. PubMed ID: 25962756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro selection of tRNAs for efficient four-base decoding to incorporate non-natural amino acids into proteins in an Escherichia coli cell-free translation system.
    Taira H; Hohsaka T; Sisido M
    Nucleic Acids Res; 2006; 34(5):1653-62. PubMed ID: 16549877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro incorporation of nonnatural amino acids into protein using tRNA(Cys)-derived opal, ochre, and amber suppressor tRNAs.
    Gubbens J; Kim SJ; Yang Z; Johnson AE; Skach WR
    RNA; 2010 Aug; 16(8):1660-72. PubMed ID: 20581130
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Directed Evolution of Heterologous tRNAs Leads to Reduced Dependence on Post-transcriptional Modifications.
    Baldridge KC; Jora M; Maranhao AC; Quick MM; Addepalli B; Brodbelt JS; Ellington AD; Limbach PA; Contreras LM
    ACS Synth Biol; 2018 May; 7(5):1315-1327. PubMed ID: 29694026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flexizymes: their evolutionary history and the origin of catalytic function.
    Morimoto J; Hayashi Y; Iwasaki K; Suga H
    Acc Chem Res; 2011 Dec; 44(12):1359-68. PubMed ID: 21711008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Site-specific incorporation of unnatural amino acids into proteins by cell-free protein synthesis.
    Ozawa K; Loh CT
    Methods Mol Biol; 2014; 1118():189-203. PubMed ID: 24395417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The de novo engineering of pyrrolysyl-tRNA synthetase for genetic incorporation of L-phenylalanine and its derivatives.
    Wang YS; Russell WK; Wang Z; Wan W; Dodd LE; Pai PJ; Russell DH; Liu WR
    Mol Biosyst; 2011 Mar; 7(3):714-7. PubMed ID: 21234492
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved amber and opal suppressor tRNAs for incorporation of unnatural amino acids in vivo. Part 2: evaluating suppression efficiency.
    Rodriguez EA; Lester HA; Dougherty DA
    RNA; 2007 Oct; 13(10):1715-22. PubMed ID: 17698637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Site-specific incorporation of non-natural amino acids into proteins in mammalian cells with an expanded genetic code.
    Hino N; Hayashi A; Sakamoto K; Yokoyama S
    Nat Protoc; 2006; 1(6):2957-62. PubMed ID: 17406555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction of Escherichia coli amber suppressor tRNA genes. III. Determination of tRNA specificity.
    Normanly J; Kleina LG; Masson JM; Abelson J; Miller JH
    J Mol Biol; 1990 Jun; 213(4):719-26. PubMed ID: 2141650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.