These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 26832824)

  • 21. The de novo engineering of pyrrolysyl-tRNA synthetase for genetic incorporation of L-phenylalanine and its derivatives.
    Wang YS; Russell WK; Wang Z; Wan W; Dodd LE; Pai PJ; Russell DH; Liu WR
    Mol Biosyst; 2011 Mar; 7(3):714-7. PubMed ID: 21234492
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Improved amber and opal suppressor tRNAs for incorporation of unnatural amino acids in vivo. Part 2: evaluating suppression efficiency.
    Rodriguez EA; Lester HA; Dougherty DA
    RNA; 2007 Oct; 13(10):1715-22. PubMed ID: 17698637
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Site-specific incorporation of non-natural amino acids into proteins in mammalian cells with an expanded genetic code.
    Hino N; Hayashi A; Sakamoto K; Yokoyama S
    Nat Protoc; 2006; 1(6):2957-62. PubMed ID: 17406555
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Construction of Escherichia coli amber suppressor tRNA genes. III. Determination of tRNA specificity.
    Normanly J; Kleina LG; Masson JM; Abelson J; Miller JH
    J Mol Biol; 1990 Jun; 213(4):719-26. PubMed ID: 2141650
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multiple incorporation of non-natural amino acids into a single protein using tRNAs with non-standard structures.
    Ohtsuki T; Manabe T; Sisido M
    FEBS Lett; 2005 Dec; 579(30):6769-74. PubMed ID: 16310775
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In vivo incorporation of an alkyne into proteins in Escherichia coli.
    Deiters A; Schultz PG
    Bioorg Med Chem Lett; 2005 Mar; 15(5):1521-4. PubMed ID: 15713420
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Investigation of end processing and degradation of premature tRNAs and their application to stabilization of in vitro transcripts in wheat germ extract.
    Ogawa A; Doi Y
    Org Biomol Chem; 2015 Jan; 13(4):1008-12. PubMed ID: 25469846
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Design of carrier tRNAs and selection of four-base codons for efficient incorporation of various nonnatural amino acids into proteins in Spodoptera frugiperda 21 (Sf21) insect cell-free translation system.
    Taki M; Tokuda Y; Ohtsuki T; Sisido M
    J Biosci Bioeng; 2006 Dec; 102(6):511-7. PubMed ID: 17270715
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rational design of aminoacyl-tRNA synthetase specific for p-acetyl-L-phenylalanine.
    Sun R; Zheng H; Fang Z; Yao W
    Biochem Biophys Res Commun; 2010 Jan; 391(1):709-15. PubMed ID: 19944076
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In vivo incorporation of multiple unnatural amino acids through nonsense and frameshift suppression.
    Rodriguez EA; Lester HA; Dougherty DA
    Proc Natl Acad Sci U S A; 2006 Jun; 103(23):8650-5. PubMed ID: 16728509
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Screening system for orthogonal suppressor tRNAs based on the species-specific toxicity of suppressor tRNAs.
    Tian H; Deng D; Huang J; Yao D; Xu X; Gao X
    Biochimie; 2013 Apr; 95(4):881-8. PubMed ID: 23274575
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Flexizyme as a versatile tRNA acylation catalyst and the application for translation.
    Murakami H; Ohta A; Goto Y; Sako Y; Suga H
    Nucleic Acids Symp Ser (Oxf); 2006; (50):35-6. PubMed ID: 17150804
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of short untranslated regions that sufficiently enhance translation in high-quality wheat germ extract.
    Ogawa A; Tabuchi J; Doi Y
    Bioorg Med Chem Lett; 2014 Aug; 24(16):3724-7. PubMed ID: 25037913
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Coupled in vitro transcription/translation based on wheat germ extract for efficient expression from PCR-generated templates in short-time batch reactions.
    Takahashi H; Ogawa A
    Bioorg Med Chem Lett; 2021 Nov; 52():128412. PubMed ID: 34634474
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Engineering of an orthogonal aminoacyl-tRNA synthetase for efficient incorporation of the non-natural amino acid O-methyl-L-tyrosine using fluorescence-based bacterial cell sorting.
    Kuhn SM; Rubini M; Fuhrmann M; Theobald I; Skerra A
    J Mol Biol; 2010 Nov; 404(1):70-87. PubMed ID: 20837025
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Increased gene translation stringency in mammalian cells by nonsense suppression at multiple permissive sites with a single noncanonical amino acid.
    Kadunc L; Svetličič M; Forstnerič V; Hafner Bratkovič I; Jerala R
    FEBS Lett; 2020 Aug; 594(15):2452-2461. PubMed ID: 32401336
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biosynthesis of proteins containing modified lysines and fluorescent labels using non-natural amino acid mutagenesis.
    Tokuda Y; Watanabe T; Horiike K; Shiraga K; Abe R; Muranaka N; Hohsaka T
    J Biosci Bioeng; 2011 Apr; 111(4):402-7. PubMed ID: 21216664
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cell-free co-production of an orthogonal transfer RNA activates efficient site-specific non-natural amino acid incorporation.
    Albayrak C; Swartz JR
    Nucleic Acids Res; 2013 Jun; 41(11):5949-63. PubMed ID: 23589624
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Monitoring mis-acylated tRNA suppression efficiency in mammalian cells via EGFP fluorescence recovery.
    Ilegems E; Pick HM; Vogel H
    Nucleic Acids Res; 2002 Dec; 30(23):e128. PubMed ID: 12466560
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Novel in vivo system to monitor tRNA expression based on the recovery of GFP fluorescence and its application for the determination of plant tRNA expression.
    Oohashi F; Aga Y; Yukawa Y; Akama K
    Gene; 2019 Jun; 703():145-152. PubMed ID: 30940526
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.