These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 26832824)

  • 41. High-level cell-free synthesis yields of proteins containing site-specific non-natural amino acids.
    Goerke AR; Swartz JR
    Biotechnol Bioeng; 2009 Feb; 102(2):400-16. PubMed ID: 18781689
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Synthesis and site-directed fluorescence labeling of azido proteins using eukaryotic cell-free orthogonal translation systems.
    Quast RB; Claussnitzer I; Merk H; Kubick S; Gerrits M
    Anal Biochem; 2014 Apr; 451():4-9. PubMed ID: 24491444
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A tRNA aminoacylation system for non-natural amino acids based on a programmable ribozyme.
    Bessho Y; Hodgson DR; Suga H
    Nat Biotechnol; 2002 Jul; 20(7):723-8. PubMed ID: 12089559
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The ribosome can discriminate the chirality of amino acids within its peptidyl-transferase center.
    Englander MT; Avins JL; Fleisher RC; Liu B; Effraim PR; Wang J; Schulten K; Leyh TS; Gonzalez RL; Cornish VW
    Proc Natl Acad Sci U S A; 2015 May; 112(19):6038-43. PubMed ID: 25918365
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cell-Free Protein Synthesis Using S30 Extracts from
    Adachi J; Katsura K; Seki E; Takemoto C; Shirouzu M; Terada T; Mukai T; Sakamoto K; Yokoyama S
    Int J Mol Sci; 2019 Jan; 20(3):. PubMed ID: 30678326
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cell-free N-terminal protein labeling using initiator suppressor tRNA.
    Mamaev S; Olejnik J; Olejnik EK; Rothschild KJ
    Anal Biochem; 2004 Mar; 326(1):25-32. PubMed ID: 14769332
    [TBL] [Abstract][Full Text] [Related]  

  • 47. In situ generation of aminoacyl-tRNAs assisted by ribozymes in translation apparatus.
    Ohuchi M; Murakami H; Suga H
    Nucleic Acids Symp Ser (Oxf); 2007; (51):115-6. PubMed ID: 18029613
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Site Specific Genetic Incorporation of Azidophenylalanine in Schizosaccharomyces pombe.
    Shao N; Singh NS; Slade SE; Jones AM; Balasubramanian MK
    Sci Rep; 2015 Nov; 5():17196. PubMed ID: 26597962
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Site-specific incorporation of nonnatural residues during in vitro protein biosynthesis with semisynthetic aminoacyl-tRNAs.
    Bain JD; Diala ES; Glabe CG; Wacker DA; Lyttle MH; Dix TA; Chamberlin AR
    Biochemistry; 1991 Jun; 30(22):5411-21. PubMed ID: 2036409
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Development of improved tRNAs for in vitro biosynthesis of proteins containing unnatural amino acids.
    Cload ST; Liu DR; Froland WA; Schultz PG
    Chem Biol; 1996 Dec; 3(12):1033-8. PubMed ID: 9000011
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Construction of Escherichia coli amber suppressor tRNA genes. II. Synthesis of additional tRNA genes and improvement of suppressor efficiency.
    Kleina LG; Masson JM; Normanly J; Abelson J; Miller JH
    J Mol Biol; 1990 Jun; 213(4):705-17. PubMed ID: 2193162
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Evolved sequence contexts for highly efficient amber suppression with noncanonical amino acids.
    Pott M; Schmidt MJ; Summerer D
    ACS Chem Biol; 2014 Dec; 9(12):2815-22. PubMed ID: 25299570
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Expanding the genetic code of Escherichia coli.
    Wang L; Brock A; Herberich B; Schultz PG
    Science; 2001 Apr; 292(5516):498-500. PubMed ID: 11313494
    [TBL] [Abstract][Full Text] [Related]  

  • 54. In vitro selection of a 3' terminal short protector that stabilizes transcripts to improve the translation efficiency in a wheat germ extract.
    Ogawa A; Kutsuna A; Takamatsu M; Okuzono T
    Bioorg Med Chem Lett; 2019 Aug; 29(16):2141-2144. PubMed ID: 31278030
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Purpuromycin: an antibiotic inhibiting tRNA aminoacylation.
    Kirillov S; Vitali LA; Goldstein BP; Monti F; Semenkov Y; Makhno V; Ripa S; Pon CL; Gualerzi CO
    RNA; 1997 Aug; 3(8):905-13. PubMed ID: 9257649
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Design of a bacterial host for site-specific incorporation of p-bromophenylalanine into recombinant proteins.
    Kwon I; Wang P; Tirrell DA
    J Am Chem Soc; 2006 Sep; 128(36):11778-83. PubMed ID: 16953616
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The reliability of in vivo structure-function analysis of tRNA aminoacylation.
    McClain WH; Jou YY; Bhattacharya S; Gabriel K; Schneider J
    J Mol Biol; 1999 Jul; 290(2):391-409. PubMed ID: 10390340
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Nonorthogonal tRNA(cys)(Amber) for protein and nascent chain labeling.
    Koubek J; Chen YR; Cheng RP; Huang JJ
    RNA; 2015 Sep; 21(9):1672-82. PubMed ID: 26194135
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Misacylation of yeast amber suppressor tRNA(Tyr) by E. coli lysyl-tRNA synthetase and its effective repression by genetic engineering of the tRNA sequence.
    Fukunaga J; Yokogawa T; Ohno S; Nishikawa K
    J Biochem; 2006 Apr; 139(4):689-96. PubMed ID: 16672269
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Modulation of the suppression efficiency and amino acid identity of an artificial yeast amber isoleucine transfer RNA in Escherichia coli by a G-U pair in the anticodon stem.
    Büttcher V; Senger B; Schumacher S; Reinbolt J; Fasiolo F
    Biochem Biophys Res Commun; 1994 Apr; 200(1):370-7. PubMed ID: 8166708
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.