BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 26832825)

  • 1. One-Pot Biosynthesis of High-Concentration α-Glucose 1-Phosphate from Starch by Sequential Addition of Three Hyperthermophilic Enzymes.
    Zhou W; You C; Ma H; Ma Y; Zhang YH
    J Agric Food Chem; 2016 Mar; 64(8):1777-83. PubMed ID: 26832825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Doubling Power Output of Starch Biobattery Treated by the Most Thermostable Isoamylase from an Archaeon Sulfolobus tokodaii.
    Cheng K; Zhang F; Sun F; Chen H; Percival Zhang YH
    Sci Rep; 2015 Aug; 5():13184. PubMed ID: 26289411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Maltose metabolism in the hyperthermophilic archaeon Thermococcus litoralis: purification and characterization of key enzymes.
    Xavier KB; Peist R; Kossmann M; Boos W; Santos H
    J Bacteriol; 1999 Jun; 181(11):3358-67. PubMed ID: 10348846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An
    Fujisawa T; Fujinaga S; Atomi H
    Appl Environ Microbiol; 2017 Aug; 83(16):. PubMed ID: 28600316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancement of cyclodextrin production through use of debranching enzymes.
    Rendleman JA
    Biotechnol Appl Biochem; 1997 Aug; 26(1):51-61. PubMed ID: 9262003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ATP-free biosynthesis of a high-energy phosphate metabolite fructose 1,6-diphosphate by in vitro metabolic engineering.
    Wang W; Liu M; You C; Li Z; Zhang YP
    Metab Eng; 2017 Jul; 42():168-174. PubMed ID: 28624535
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An in vitro synthetic biology platform for the industrial biomanufacturing of myo-inositol from starch.
    You C; Shi T; Li Y; Han P; Zhou X; Zhang YP
    Biotechnol Bioeng; 2017 Aug; 114(8):1855-1864. PubMed ID: 28409846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of debranching pattern of a thermostable isoamylase and its application for the production of resistant starch.
    Li Y; Xu J; Zhang L; Ding Z; Gu Z; Shi G
    Carbohydr Res; 2017 Jun; 446-447():93-100. PubMed ID: 28554014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced production of γ-cyclodextrin by optimization of reaction of γ-cyclodextrin glycosyltransferase as well as synchronous use of isoamylase.
    Wang L; Wu D; Chen J; Wu J
    Food Chem; 2013 Dec; 141(3):3072-6. PubMed ID: 23871061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modification of granular corn starch with 4-alpha-glucanotransferase from Thermotoga maritima: effects on structural and physical properties.
    Oh EJ; Choi SJ; Lee SJ; Kim CH; Moon TW
    J Food Sci; 2008 Apr; 73(3):C158-66. PubMed ID: 18387093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Construction of an In Vitro Synthetic Enzymatic Biosystem that Facilitates Laminaribiose Biosynthesis from Maltodextrin and Glucose.
    Sun S; Wei X; You C
    Biotechnol J; 2019 Apr; 14(4):e1800493. PubMed ID: 30548823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of cellobiose from starch by the successive actions of two phosphorylases.
    Suzuki M; Kaneda K; Nakai Y; Kitaoka M; Taniguchi H
    N Biotechnol; 2009 Oct; 26(3-4):137-42. PubMed ID: 19631300
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recombinant production and biochemical characterization of a hyperthermostable alpha-glucan/maltodextrin phosphorylase from Pyrococcus furiosus.
    Mizanur RM; Griffin AK; Pohl NL
    Archaea; 2008 Dec; 2(3):169-76. PubMed ID: 19054743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advanced water splitting for green hydrogen gas production through complete oxidation of starch by in vitro metabolic engineering.
    Kim JE; Kim EJ; Chen H; Wu CH; Adams MWW; Zhang YP
    Metab Eng; 2017 Nov; 44():246-252. PubMed ID: 28974378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Starch modification with microbial alpha-glucanotransferase enzymes.
    van der Maarel MJ; Leemhuis H
    Carbohydr Polym; 2013 Mar; 93(1):116-21. PubMed ID: 23465909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptional and biochemical analysis of starch metabolism in the hyperthermophilic archaeon Pyrococcus furiosus.
    Lee HS; Shockley KR; Schut GJ; Conners SB; Montero CI; Johnson MR; Chou CJ; Bridger SL; Wigner N; Brehm SD; Jenney FE; Comfort DA; Kelly RM; Adams MW
    J Bacteriol; 2006 Mar; 188(6):2115-25. PubMed ID: 16513741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzymatic synthesis of dendritic amphoteric α-glucans by thermostable phosphorylase catalysis.
    Takata Y; Shimohigoshi R; Yamamoto K; Kadokawa J
    Macromol Biosci; 2014 Oct; 14(10):1437-43. PubMed ID: 24978042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient Biocatalytic Production of Cyclodextrins by Combined Action of Amylosucrase and Cyclodextrin Glucanotransferase.
    Koh DW; Park MO; Choi SW; Lee BH; Yoo SH
    J Agric Food Chem; 2016 Jun; 64(21):4371-5. PubMed ID: 27169988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of a cellobiose phosphorylase from a hyperthermophilic eubacterium, Thermotoga maritima MSB8.
    Rajashekhara E; Kitaoka M; Kim YK; Hayashi K
    Biosci Biotechnol Biochem; 2002 Dec; 66(12):2578-86. PubMed ID: 12596851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing the cyclodextrin production by synchronous utilization of isoamylase and α-CGTase.
    Duan X; Chen S; Chen J; Wu J
    Appl Microbiol Biotechnol; 2013 Apr; 97(8):3467-74. PubMed ID: 22832987
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.