These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 26832849)

  • 1. Core-shell nanoparticles by silica coating of metal oxides in a dual-stage hydrothermal flow reactor.
    Hellstern HL; Mamakhel A; Bremholm M; Iversen BB
    Chem Commun (Camb); 2016 Feb; 52(16):3434-7. PubMed ID: 26832849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fine tuning of the relaxometry of γ-Fe2O3@SiO2 nanoparticles by tweaking the silica coating thickness.
    Pinho SL; Pereira GA; Voisin P; Kassem J; Bouchaud V; Etienne L; Peters JA; Carlos L; Mornet S; Geraldes CF; Rocha J; Delville MH
    ACS Nano; 2010 Sep; 4(9):5339-49. PubMed ID: 20795638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of core-shell α-Fe(2)O(3)@ Li(4)Ti(5)O(12) composite and its application in the lithium ion batteries.
    Chen M; Li W; Shen X; Diao G
    ACS Appl Mater Interfaces; 2014 Mar; 6(6):4514-23. PubMed ID: 24598727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tailored core-shell-shell nanostructures: sandwiching gold nanoparticles between silica cores and tunable silica shells.
    Shi YL; Asefa T
    Langmuir; 2007 Aug; 23(18):9455-62. PubMed ID: 17661498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superparamagnetic gamma-Fe2O3@SiO2 nanoparticles: a novel support for the immobilization of [VO(acac)2].
    Pereira C; Pereira AM; Quaresma P; Tavares PB; Pereira E; Araújo JP; Freire C
    Dalton Trans; 2010 Mar; 39(11):2842-54. PubMed ID: 20200711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Silica shell/gold core nanoparticles: correlating shell thickness with the plasmonic red shift upon aggregation.
    Vanderkooy A; Chen Y; Gonzaga F; Brook MA
    ACS Appl Mater Interfaces; 2011 Oct; 3(10):3942-7. PubMed ID: 21882833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Corn-like, recoverable γ-Fe
    Wang F; Li M; Yu L; Sun F; Wang Z; Zhang L; Zeng H; Xu X
    Sci Rep; 2017 Jul; 7(1):6960. PubMed ID: 28761085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling silica coating thickness on TiO2 nanoparticles for effective photodynamic therapy.
    Feng X; Zhang S; Lou X
    Colloids Surf B Biointerfaces; 2013 Jul; 107():220-6. PubMed ID: 23502045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and Electroresponse Activity of Porous Polypyrrole/Silica-Titania Core/Shell Nanoparticles.
    Yoon CM; Cho KH; Jang Y; Kim J; Lee K; Yu H; Lee S; Jang J
    Langmuir; 2018 Dec; 34(51):15773-15782. PubMed ID: 30507208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic properties of γ-Fe
    Kamali S; Yu E; Bates B; McBride JR; Johnson CE; Taufour V; Stroeve P
    J Phys Condens Matter; 2020 Nov; 33(6):065301. PubMed ID: 33231198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Core-shell structured α-Fe2O3@TiO2 nanocomposites with improved photocatalytic activity in the visible light region.
    Xia Y; Yin L
    Phys Chem Chem Phys; 2013 Nov; 15(42):18627-34. PubMed ID: 24085286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Template and silica interlayer tailorable synthesis of spindle-like multilayer α-Fe2O3/Ag/SnO2 ternary hybrid architectures and their enhanced photocatalytic activity.
    Sun L; Wu W; Yang S; Zhou J; Hong M; Xiao X; Ren F; Jiang C
    ACS Appl Mater Interfaces; 2014 Jan; 6(2):1113-24. PubMed ID: 24369679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silane-based poly(ethylene glycol) as a primer for surface modification of nonhydrolytically synthesized nanoparticles using the Stöber method.
    Shen R; Camargo PH; Xia Y; Yang H
    Langmuir; 2008 Oct; 24(19):11189-95. PubMed ID: 18781788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of plasmonic gold-silica core-shell nanoparticle stability in dye-sensitized solar cell applications.
    Törngren B; Akitsu K; Ylinen A; Sandén S; Jiang H; Ruokolainen J; Komatsu M; Hamamura T; Nakazaki J; Kubo T; Segawa H; Österbacka R; Smått JH
    J Colloid Interface Sci; 2014 Aug; 427():54-61. PubMed ID: 24388614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of antibacterial activities of Ag@TiO2 and Ag@SiO2 core-shell nanoparticles.
    Dhanalekshmi KI; Meena KS
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jul; 128():887-90. PubMed ID: 24709355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. One-step silica coating of cetyltrimethyl ammonium bromide-stabilized alpha-Fe2O3.
    Kim Y; Cho GT; Pee JH; Choi ES
    J Nanosci Nanotechnol; 2010 Jan; 10(1):380-2. PubMed ID: 20352866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of Color and Structure of
    Yu R; An GS; Pee JH; Kim Y
    J Nanosci Nanotechnol; 2018 Sep; 18(9):6133-6136. PubMed ID: 29677755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Whiter, brighter, and more stable cellulose paper coated with TiO2 /SiO2 core/shell nanoparticles using a layer-by-layer approach.
    Cheng F; Lorch M; Sajedin SM; Kelly SM; Kornherr A
    ChemSusChem; 2013 Aug; 6(8):1392-9. PubMed ID: 23868805
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetic core-shell fluorescent pH ratiometric nanosensor using a Stöber coating method.
    Lapresta-Fernández A; Doussineau T; Moro AJ; Dutz S; Steiniger F; Mohr GJ
    Anal Chim Acta; 2011 Nov; 707(1-2):164-70. PubMed ID: 22027134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Well-crystallized mesoporous TiO2 shells for enhanced photocatalytic activity: prepared by carbon coating and silica-protected calcination.
    Zhang Z; Zhou Y; Zhang Y; Zhou S; Shi J; Kong J; Zhang S
    Dalton Trans; 2013 Apr; 42(14):5004-12. PubMed ID: 23389414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.