These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 26833036)

  • 1. Real-Time Monitoring of Singlet Oxygen and Oxygen Partial Pressure During the Deep Photodynamic Therapy In Vitro.
    Li W; Huang D; Zhang Y; Liu Y; Gu Y; Qian Z
    Ann Biomed Eng; 2016 Sep; 44(9):2737-45. PubMed ID: 26833036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo singlet molecular oxygen measurements: Sensitive to changes in oxygen saturation during PDT.
    Looft A; Pfitzner M; Preuß A; Röder B
    Photodiagnosis Photodyn Ther; 2018 Sep; 23():325-330. PubMed ID: 30026074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Classic Near-Infrared Probe Indocyanine Green for Detecting Singlet Oxygen.
    Tang CY; Wu FY; Yang MK; Guo YM; Lu GH; Yang YH
    Int J Mol Sci; 2016 Feb; 17(2):219. PubMed ID: 26861313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon dot-assisted luminescence of singlet oxygen: the generation dynamics but not the cumulative amount of singlet oxygen is responsible for the photodynamic therapy efficacy.
    Teng X; Li F; Lu C; Li B
    Nanoscale Horiz; 2020 Jun; 5(6):978-985. PubMed ID: 32314991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Singlet oxygen luminescence dosimetry (SOLD) for photodynamic therapy: current status, challenges and future prospects.
    Jarvi MT; Niedre MJ; Patterson MS; Wilson BC
    Photochem Photobiol; 2006; 82(5):1198-210. PubMed ID: 16808593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A New handheld singlet oxygen detection system (SODS) and NIR light source based phantom environment for photodynamic therapy applications.
    Kamanli AF; Çetinel G; Yıldız MZ
    Photodiagnosis Photodyn Ther; 2020 Mar; 29():101577. PubMed ID: 31711998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monitoring singlet oxygen in situ with delayed chemiluminescence to deduce the effect of photodynamic therapy.
    Wei Y; Xing D; Luo S; Xu W; Chen Q
    J Biomed Opt; 2008; 13(2):024023. PubMed ID: 18465986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prospects of in vivo singlet oxygen luminescence monitoring: Kinetics at different locations on living mice.
    Pfitzner M; Schlothauer JC; Bastien E; Hackbarth S; Bezdetnaya L; Lassalle HP; Röder B
    Photodiagnosis Photodyn Ther; 2016 Jun; 14():204-10. PubMed ID: 26987416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calculation of singlet oxygen dose using explicit and implicit dose metrics during benzoporphyrin derivative monoacid ring A (BPD-MA)-PDT in vitro and correlation with MLL cell survival.
    Weston MA; Patterson MS
    Photochem Photobiol; 2011; 87(5):1129-37. PubMed ID: 21575000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monitoring of singlet oxygen is useful for predicting the photodynamic effects in the treatment for experimental glioma.
    Yamamoto J; Yamamoto S; Hirano T; Li S; Koide M; Kohno E; Okada M; Inenaga C; Tokuyama T; Yokota N; Terakawa S; Namba H
    Clin Cancer Res; 2006 Dec; 12(23):7132-9. PubMed ID: 17145838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An efficient two-photon fluorescent probe for monitoring mitochondrial singlet oxygen in tissues during photodynamic therapy.
    Liu HW; Xu S; Wang P; Hu XX; Zhang J; Yuan L; Zhang XB; Tan W
    Chem Commun (Camb); 2016 Oct; 52(83):12330-12333. PubMed ID: 27722455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. pH-Triggered Polypeptides Nanoparticles for Efficient BODIPY Imaging-Guided Near Infrared Photodynamic Therapy.
    Liu L; Fu L; Jing T; Ruan Z; Yan L
    ACS Appl Mater Interfaces; 2016 Apr; 8(14):8980-90. PubMed ID: 27020730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of various nanoparticles in photodynamic therapy and detection methods of singlet oxygen.
    Krajczewski J; Rucińska K; Townley HE; Kudelski A
    Photodiagnosis Photodyn Ther; 2019 Jun; 26():162-178. PubMed ID: 30914390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ratiometric Fluorescent Detection of Intracellular Singlet Oxygen by Semiconducting Polymer Dots.
    Hou W; Yuan Y; Sun Z; Guo S; Dong H; Wu C
    Anal Chem; 2018 Dec; 90(24):14629-14634. PubMed ID: 30463405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Bifunctional Photosensitizer for Enhanced Fractional Photodynamic Therapy: Singlet Oxygen Generation in the Presence and Absence of Light.
    Turan IS; Yildiz D; Turksoy A; Gunaydin G; Akkaya EU
    Angew Chem Int Ed Engl; 2016 Feb; 55(8):2875-8. PubMed ID: 26799149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Near-Infrared Chemiluminescent Probe for Real-Time Monitoring Singlet Oxygen in Cells and Mice Model.
    Yang M; Zhang J; Shabat D; Fan J; Peng X
    ACS Sens; 2020 Oct; 5(10):3158-3164. PubMed ID: 32933258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calculation of singlet oxygen dose from photosensitizer fluorescence and photobleaching during mTHPC photodynamic therapy of MLL cells.
    Dysart JS; Singh G; Patterson MS
    Photochem Photobiol; 2005; 81(1):196-205. PubMed ID: 15469385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modification of Structural and Luminescence Properties of Graphene Quantum Dots by Gamma Irradiation and Their Application in a Photodynamic Therapy.
    Jovanović SP; Syrgiannis Z; Marković ZM; Bonasera A; Kepić DP; Budimir MD; Milivojević DD; Spasojević VD; Dramićanin MD; Pavlović VB; Todorović Marković BM
    ACS Appl Mater Interfaces; 2015 Nov; 7(46):25865-74. PubMed ID: 26540316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predictions of mathematical models of tissue oxygenation and generation of singlet oxygen during photodynamic therapy.
    Yuan J; Mahama-Relue PA; Fournier RL; Hampton JA
    Radiat Res; 1997 Oct; 148(4):386-94. PubMed ID: 9339955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High oxygen partial pressure increases photodynamic effect on HeLa cell lines in the presence of chloraluminium phthalocyanine.
    Bajgar R; Kolarova H; Bolek L; Binder S; Pizova K; Hanakova A
    Anticancer Res; 2014 Aug; 34(8):4095-9. PubMed ID: 25075034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.