These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 26834390)

  • 1. Design and development of a dust dispersion chamber to quantify the dispersibility of rock dust.
    Perera IE; Sapko MJ; Harris ML; Zlochower IA; Weiss ES
    J Loss Prev Process Ind; 2016 Jan; 39():7-16. PubMed ID: 26834390
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sampling and analysis method for measuring airborne coal dust mass in mixtures with limestone (rock) dust.
    Barone TL; Patts JR; Janisko SJ; Colinet JF; Patts LD; Beck TW; Mischler SE
    J Occup Environ Hyg; 2016; 13(4):284-92. PubMed ID: 26618374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Particle size and surface area effects on explosibility using a 20-L chamber.
    Harris ML; Sapko MJ; Zlochower IA; Perera IE; Weiss ES
    J Loss Prev Process Ind; 2015 Sep; 37():33-8. PubMed ID: 26523092
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Factors Affecting the Performance of Trickle Dusters for Preventing Explosive Dust Accumulations in Return Airways.
    Sapko MJ; Harris ML; Perera IE; Zlochower IA; Weiss ES
    J Loss Prev Process Ind; 2019 Aug; 61():1-7. PubMed ID: 31745379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Floor dust erosion during early stages of coal dust explosion development.
    Harris ML; Sapko MJ
    Int J Min Sci Technol; 2019 Dec; 29(6):825-830. PubMed ID: 31911844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of airborne float coal dust emitted during continuous mining, longwall mining and belt transport.
    Shahan MR; Seaman CE; Beck TW; Colinet JF; Mischler SE
    Min Eng; 2017 Sep; 69(9):61-66. PubMed ID: 28936001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Treated and untreated rock dust: Quartz content and physical characterization.
    Soo JC; Lee T; Chisholm WP; Farcas D; Schwegler-Berry D; Harper M
    J Occup Environ Hyg; 2016 Nov; 13(11):D201-7. PubMed ID: 27314444
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of specific surface area on coal dust explosibility using the 20-L chamber.
    Zlochower IA; Sapko MJ; Perera IE; Brown CB; Harris ML; Rayyan NS
    J Loss Prev Process Ind; 2018 Jul; 54():103-109. PubMed ID: 29681689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Respirable dust measured downwind during rock dust application.
    Harris ML; Organiscak J; Klima S; Perera IE
    Min Eng; 2017 May; 69(5):69-74. PubMed ID: 28706322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of coal mine dust size distributions and calibration standards for crystalline silica analysis.
    Page SJ
    AIHA J (Fairfax, Va); 2003; 64(1):30-9. PubMed ID: 12570393
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of coarse coal dust sampling techniques in a laboratory-simulated longwall section.
    Patts JR; Barone TL
    J Occup Environ Hyg; 2017 May; 14(5):323-334. PubMed ID: 27792474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of dust dispersibility on the suppressant enhanced explosion parameter (SEEP) in flame propagation of Al dust clouds.
    Bu Y; Amyotte P; Li C; Yuan W; Yuan C; Li G
    J Hazard Mater; 2021 Feb; 404(Pt B):124119. PubMed ID: 33075625
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of the CAS-POL and IOM samplers for determining the knockdown efficiencies of water sprays on float coal dust.
    Seaman CE; Shahan MR; Beck TW; Mischler SE
    J Occup Environ Hyg; 2018 Mar; 15(3):214-225. PubMed ID: 29200377
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The quantitative studies on gas explosion suppression by an inert rock dust deposit.
    Song Y; Zhang Q
    J Hazard Mater; 2018 Jul; 353():62-69. PubMed ID: 29635175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of a water curtain to reduce accumulations of float coal dust in longwall returns.
    Seaman CE; Shahan MR; Beck TW; Mischler SE
    Int J Min Sci Technol; 2020 Jul; 30(4):443-447. PubMed ID: 32953195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Empirical engineering models for airborne respirable dust capture from water sprays and wet scrubbers.
    Organiscak JA; Klima SS; Pollock DE
    Min Eng; 2018 Oct; 70(10):50-57. PubMed ID: 30532342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The preparation and characterization of fine dusts carried out in the Clinica del Lavoro di Milano in support of experimental studies].
    Occella E; Maddalon G; Peruzzo GF; Foà V
    Med Lav; 1999; 90(5):704-21. PubMed ID: 10596545
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exposure to Harmful Dusts on Fully Powered Longwall Coal Mines in Poland.
    Brodny J; Tutak M
    Int J Environ Res Public Health; 2018 Aug; 15(9):. PubMed ID: 30150562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of ground control mesh on dust sampling and explosion mitigation.
    Alexander DW; Chasko LL
    Min Eng; 2015 Jul; 67(7):111-117. PubMed ID: 28936000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential pressure response of 25-mm-diameter glass fiber filters challenged with coal and limestone dust mixtures.
    Dobroski H; Tuchman DP; Vinson RP; Timko RJ
    Appl Occup Environ Hyg; 2002 Feb; 17(2):96-103. PubMed ID: 11843204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.